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Prefactory Note . . el ‘
—_— "
The “Geselischaft fir Mathematik und Datenverarbeitung ( GMD ) mbH Boan ” has been in close 4
contact with Professor.Dr. Ing. Konrad Zuse over a long period. In addition to a number of contanfs 7

a symposium Viewpoints for the development of algorithmic languages ” was held at which Professor
Zuse read a paper omuhis ¢ Plankalkil . S

AR

I am particularly anxious that the puglication of the * Plankalkill ” by the * Gesellschaft fiir Mathematik
" und Datenverarbeitung " should take place at this time and, hopefully, promote further interest in these
fields of study. : ’
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Preface to the English Version

‘
‘4

The English version was published- in 197;/ i)y the * Gesellschaft fiir Mathematik und Datenverarbeitung

mbH, Bonn . My special thanks go to Dipl.-Ing. Gerhard Overhoff for the assistance of the translation.

In the years 1940 — 1945 he has already been interested in my research, stimulating and supporting
it. Much to my, regret -Mr. Overhoff died January 27, 1975, after having completed this translation.
‘. N

The English version corft‘:{iﬁs some modifications in comparison to the German version. Some sections in
chapter 3 are omitted. Furthermore, the Plankalkiil has been revised in the last two years. This led to
some modifications in the commentary. In the original Plankalkiil — in order to preserve its historial
form — only a few typographxcal errors were corrected. For this reason, the English versxon too
_deliberately contains some ineorrect programs

For the version of the Plankglkul i .Want to thank :also Mr Dipl.-Inf. Hohmann, the *Deutsche
Forschungs—Gememschaft v Geseilschaft fur Mathematlk und Datenverarbextung mbH Bonn ” and
the * Siemens Gesellschaft
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Preface - . {
The Plankalkil was developed and written by me in 1945 in the small village of Hinterstein in the
Alps. The difficult situation prevaﬂmg after the war meant that I was unable to continue the hardware
research that I had begun in 1936. This did mean however that I was able to concentrate on theoretical
studies and as a result of these the concept of an algorithmic language was born. I called it *“ Plan - '

kalkiil ” , but unfortunately it couid fiot be published at the time. }

Over the past 30 years.the study of algorithmic languages became a science in its own right, and one
with considerable practital importance. Some of the developments that took place in this field followed
the lines I had proposed, while others took a different course. For example, PL/1 and Algol 68, two
modern programming languages, have something in common with Plankalkil ( see “ The Plankalkiil of
Konrad Zuse, a Forerunner of Todab; s Programmmg Languages in “ Elektronische Rechenanlagen
1972, Heft 2 ) . :

- I

I believe that Plankalkill is still of significance today, and the publication, which was not possxble durmg;
the early post—war years, can now be achieved. As part of this publicaticn a concise summary of the

preparatory work I had intended to write for my doctoral dissertation “ Statements of a theory of ; ,

general calculating ™ is included. There is also a comment written by me in 1972,

The work, supported by * Siemens Gesellschaft, Miinchen”, is published by * Gesellschaft fiir Mathe-
matik und Datenverarbeitung mbH, Bonn ” . Special thanks are due to Professor Gumin and Professor f
Kriickeberg for their assistance. It is my hope that this publication will stxmulate further fruitful '
cooperation. ' ;
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STATEMENTS OF A THEORY OF GENERAL CALCULATION

with special consideration of the Calculus of Propositions and its application to relay circuits.

i
by Konrad Zuse 1944 .
~ - . {
Concise Summary ' . ‘

‘Published 1972 as an addentum to the publication of the Plankalkuel ( PK )

- Preface TR S : ,
~ A Y N . . o - e

The paper on the Theory of General Cilculation was written during world war II by the author who intended
is as his doctor thesis. However, as a consequence of the unfortunate conditions prevailing in Germany

during and after the war, he could not realize his plan and the paper was not published at that time. t )

a . : '

There exist a great number of publications on the subject today and the application of mathematical logic ¢
to the design of computers ang" the't_heory of switching have developed into a special sience. - ;
s ‘,\ ¥

The author was unfortunately occupfed with other tasks after the war, which did not allow him to continue ;
with his theoretical work on this subject. :
'

paper in concise form, and it should be helpful for an understanding of the Plankalkuel .

e

Normal typing is used for the original text of the manuscript, and Italics for later additions. ¢

Introduction ' : ' v F

The voluminous repetitive compﬁtations associated with statically undetermined systems encountered during
studies of Civil Engineering induced me, to conceive an automation of the numerical computations. In pur -
suit of this idea I built several experimental computer models.

v Y

My first aim was to construct computers merely for numerical computations. However, in the course of my
designwork I soon developed a concept for combinatorial computations. The difficulties in the design of the
complicated control units of my computer models and the realisation. that, in principle , all calculating ope P
rations can be solved by means of relais cicuits, induced me to deve'lop a *‘Conditional calculus”.. Later, I
discovered that my Conditional Calculus corresponded to the Calculus of Propositions. Supported by the !
latter’s logical formalism , I elaborated statements to a theory of General Calculation with special conside -
ration of the Calculus of Propositions and its applications to the design of relay circuits. !

I found that the term “ calculate * has different meahings depending on its use in the language. In science ,

engineering, and economy “ calculate > is generally used in association with numerical operations. Colloquialy -

however , it is frequently applied to combinatorial processes.

A practical example for a non numerical calculating operation is the derivation of a mathematical expression ,
i.e. the application of a formuly by which the derivative of a given algebraic expression can be produced. Most
of the mathematical transformations of expressions, equations, and systems of formulas can be considered :
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X
as calculations, if clearly defined algorithms exist for the production of results as functions of given data . ‘ &
In the solution of engineering problems, the development of a formula is very often only schematic routine y
work and , as such , a calculating process in the combinatorial sense. It is the programming of the numerical 2‘
computation for a system of a given structure. The inputs for this procedure are the data of the topologxcal U
structure of the system and the output is the agorithm, i.e. the program for the computation of desired Te - i
sulting values . PR v
Similarly, payroll accounting not only comprises numerical computing, but also combinatorial calculating, H
since the course of the numencal computations is governed by a program, which is dependent on many con - :‘.
ditions, like maritat sta‘tus, number of children, overtime hours, etc. ' b
. ~ . L

In statistics , also numerical computations form only a part of the calculating processes. The selection of
Data according to certain criteria, theire valuation, classification, and sorting represent combinatorial

o
- e

. .
1

operations. oS 1
. . '
So far, nobody seems to have felt the need to mcorporate all of the combinatorial operations in a unifdrm ;
formalism. R .‘~.~. ;
N ;
Even in railway engineering, where élearly defined specifications govern the operation of switching and ‘
signalling devices, where complex mechanical gears have been developed, which realize the specifications , ) 5

no systematic formalism has been applied so far .

sy

The paper is intended as a stimulus for concerned parties. In this , it is my aim to familiarize the practical
L
engineer with mathematical logic. . :

For this purpose the formalism of logic must be adaptable to practival use by enegineers and consequently
must be free of any philosophical reasoning. 7

JR— e e e PR «F [SRRAMIN




~ Chapter 1.

Statements of a General Calculations Calculus ‘ ‘s

A)  General Introduction

1)  Definition of the term-“Calculation”

-+ ——

,\‘ .' $
In the following text we will regard all schematic operations, formulas, derivations, and algorithms as calculating ¥
processes if, according to a program, resulting data are computed from given input data. The numerical calculations

belong to the lowest level of the calculation thus defined.

)

A PO

Consequently, to calculate ‘means: “ To compute new data according to a (algorithm) program”.

N \
+

2)  Explanation of the Term “Data” | ‘s,

L

a) General Data
Data can be of very different nature (modes types), they may be numbers, names, adresses, signals, ranks,
coordinates, etc. All data have content. The content is the meaning of the data. We must distinguish between
the constant and the variable part of the data. The difference between the two can best be explained using
the example of a form or questionaire with preprinted constant information and blank spaces prov1ded for
the addition of variable information, e.g. name, birthday marital status, etc.

> e

e aaad

The preprinted information corresponds to the constant part of the data and the blank spaces to the
variable part, As long as the blank spaces are not filled in they represent undetermined values of variables. -
In order to calculate with such variables one has to refer to them by means of symbols and to interrelate
them by formulas. The varibility of the data is determined by the number of the values which their variable
part can assume. Consequently, the sign of a number is a two—fold variable, of a decimal digit a ten—fold
and of a letter a twenty—six fold variable. V

- et

L ad

b) Two —fold Variable Data
The most simple form of data are the two—fold variables. Leibniz applied this perception to numbers by
developing a number system with only the two digits 0 and 1, which he called “Dyadik”. This Binary System
has also been applied in other fields, for example in the Calculus of Propositions with the values true and

“false” instead of 0 and 1. Henceforth in this text, such two—fold variables will be called “Yes—-No—Value!”.

In principle, any data, no matter how complicated can be represented by Yes—No—Values.

Tegiar! numbers are composed of ten—fold varjable digits. Each of these digits can be represented by 4
Yes—No—Values ifcoded in the binary system. For example

R R S S
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7 3
73 = OLLL . 00LL

To distinguish the decimal figure 1 from the binary “On  or * Yes ™, the corresponding binary values -
will be represented by a capital L, the “Off’ or “No” byaZero (0). - T

‘%

The corresponding binary number is :
73 = LOOLOOL -
Letters can be cod_éd‘ by:S- Yes — No~ Values, as has been done in teleprinting.

In general , a series of n Yes — No — Values has a variability of 2% . Therefore , 5 Yes — No — Values can
represent 32 characters : e.g. the 26 letters of the alphabet and 6 others. The spaces between characters
also have to be treated ltke characters.

Representation of Yes —No —Values (Y-N—Values): : "
. ,"\

Y—N-—Values can be represented in determined or in undetermined form. For the determined form we
need two—fold variable symbols, for instance ( —+) or (O,L). For the undetermined form we

may use letters.
Structure of Data
In principle, any data can be represented by a sequence of Y—N—Values, but the sequence may become

infinite . An irrational number, as an example, can only be represented exactly by an infinite sequence of
digits. In practice, numbers are limited by a finite number of digits. In this case, the data are of a fixed

‘structure.

In contrast to those are data of variable structure. The number of the employees of a factory, for example,
is varying in size. ’

Variables of composed but fixed structure are for instance:

complex numbers, vectors, matrices, etc.

o
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A

B) Formalisms Interrelating Data }

| Y

1) ’l‘he Term Algebraic Dnmensxon ‘ e . i ;

There is a set of formalisms available to interrelate data. In Logic the term Operation is used if the combmauon
tion of two variables of the same type produces a result of the same type. Such interrelations and combina -¢
tions represent the basis of Algebra as a whole. Addition , subtraction, multiplication and division are opera -
tions in this sence. Composed data, like vectors and matrices can also be connected by operations, but they

do not always, producc a result of the same type. Althrough the sum of two vectors is again a vector, theu'
scalar product i 1s a number

- v
The Calculus of Propositions utilizes a formalism in which the combination of two Y-N-Values again produces !
a Y-N-Value *) Proposmons may be true or false. While Mathematical Logic aims to arrive at true conclu - e
sions based on a ngen set of axioms, only the syntactxc combmatxon of Y-N-Values does matter here. There*

fore, there would be no sense in using the terms “ tru * false * for our purposes.

e TR

’
- nA ™

Formalisms can be establishea' for,'*:r_éfy different types of tasks, all of which may be called * algebraic . Thy
well - known logicianSchroder spoke of the *“ Algebra of Logic * . Since we will soon have to handle formulés
in which data a different type must be interrelated, we will introduce the term * algebraic dimension ”, to *
define the structure of the data; for instance :

o

3

Yes-No-Values (Y-N-Values )

real number ' .

ppare

complex number

plane vector F
spacial vector ;
Pair of coordinates _ ‘ I
matrix . ) H

th

determinant of n"" order

Formulas with variables of the same algebraic dimension only will be called ** formulas of homogenous
algebraic dimension ™

The expression ' .
2+ p2 | |

is such a formula because all its values are numbers.

1) Hilbert-Ackermann, Grundziige der theoretischen Logik, 2. Aufl. , Berlin 1937
Hilbert - Bernays, Grundlagen der Mathematik, 1. Band, Berlin 1934

MW
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The formula
(2+b)2=22+2ab + b2 ,
is also composed only of numbers, however the expression as a whole is not a number, but a statement of
the dimension Y-N-Value which we also consider to be of homogenous algebraic dimension. R {
‘4
2) Formulas of Homogenous Algebraic Dimension ‘
a) The Calculus of Proposition
The chaptcts 2) 1o 4) contain a description of the formal aspects of the Calculus of Proposition in the
representatzon gtvet( by, Hzlbert Ackermann. The following chapter 5) may deserve special attention : ,
)

5) Binary Numbers, as Propositions

A binary number can be represented by a conjunctional combination of proposmons Z, , wherein Z mean‘!
that the nth power ¢ of .2 is a component of the number In this way the number LOOL can be represent -

ed by the following formula )

In this form we cannot only charactedze single numbers but also sets of numbers. If we-confine the.appli-

cation of the expression to integral numbers with four binary digits, the expression Zy A Z o defines the

set of the following numbers : g
L000 (8) -
LOLO (10) . ;
1100 (12) ™
LLLO (14)

Special attention is then given to *Normalized Forms * and the “ Principle of Duality , because of their

great importance in the design of circuitry. F

The following'chapter is of special importance for the * Plankalkuel . v -

6) Calculus of Classes, Predicates , and Functions

The possibility of reducing all data to a sequence of Y-N-Values implies the possibility of tracing any complex

calculation back to the Calculus of Propositions. In this, the complex representation is coded into a sequence
of Y-N-Values. ' : , !

The employees of a factory, for instance, can be identified by a number with four decimal digits. This
number can be transformed into a binary number. We get a subset by selecting a special class e.g. the female
workers. The list of the numbers of these persons corresponds to the disjunctive normal form. A simpli -
fication of this form is handly possible if the numbering of the employees was continuous without regard
to their sex.

By introducing another coding system, e.g. by éssigning special digits for sex, family status, job, business ,
age, etc. we are able to calculate with this code by applying it to the calculus of propositions. This is gene -
rally practised in statistics, however, without recognition of the logical character of these operations. i

B R W o alak APV R
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As an example, the entire code for one person can be composed as follows :

1) Age : 100 - fold variable .
2) Sex ' 2 - fold variable ) ' N ‘
3) Family status 4 - fold variable

( single, married, widowed, divorced )

Coding with binary dxglts we need seven digits for item 1) one digit for item 2) and two dxglts foritem 3).

We can call them AO -\A&

- - RO AR —"

Ay Ag Aq Ag 'A2 Ap Ay = Age (binary number)

- RN ‘female
+- o ~male

- - single

- + married
+ - widowed
+ + divorced

To select the persons with the following characterists S T

1) female
2) single, widowed, or divorced

3) age between 16 and 31 years

we can use the following formula to classify them :

A7/\ A8/\A9/\A6AA5AA4
or .-
A7'A ASVA9AA6AASAA4

As an algebraic dimension we have developed a sequence of Y-N-Values for a class of persons. Composed
data of this type we can represent by a single symbol, e.g. x. X s X1 Xy, e then are the values which
x can assume. The composition of the values of x produces a new class. The propositional formula is a
predicate of the algebraic dimension Y-N- Value , representing a proposition with the meaning :

“ x has the property A ™.

In this way we can define a predicate by a “ definition equation ”

Pd; (0)=pf A; () A Ag(x) v Ag(x) A Ag (X) A Ag (x) A Ay (x)

3 T MW AR e PTIE P
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We can characterize the class selected by this predicate as follows : ) ?
o . 3
X (Pd;(x)) _ , - . | {
(those x, to which the predicate Pd, applies ) s 3
- Now we introduce other predicate : 3 ¥
. _ _ .
Pdy (x) = pp A7 (x) A Ag(x) A Ag (x) ;
Then x (Pd, (x)) represents all male single persons. ;
The predicate : . " . - b i
Pd3 (x)=p¢ (Ag (x) A A5 (X) A Ay (X)) vAg (X)) ,
selects all persons oldeigthan, or exactly 48 years of age. % t

Now we are able to form the following predicate :
- Py ()=pePdy () A Pd3 x)

Then b3 (Pdy (x)) represents the class of all male single persons who are less than 48 years old.

It is the aim of this paber to deal with *“ computable functions ” . These are functions whxch provide the
possibility of denvmg new data from given data. In the expression

T T P AN AR Wb VAP

LY o

[<(23)A<(37)}—><(27)

< (2,3 ) represents the proposition : two is less than three, etc.

In mathematical logic the validity of these propositions is checked by their derivation from axioms. From a
calculating aspect the expression is a formula with two numbers as variable and a proposition as result. The
algebraic dimension of the variables must be known for the calculation of this resuit.

- T

The algebraic dimension can be independent of the technical structure of the data. The rules of geometry for t
the elements “ line ™ and * point ™ e.g. are valid regardless of the form in which these elements are represen -
ted, ( as vectors, equations, pairs of values , etc. ). But for practical calculation their structure must be known.

gy

If, for instance, in the function < (a,b) the numbers a and b are represented by pinary numbers of three
digits, then the propositional formula is a follows : !

(byaT)v(byay) a(byaT)IvI(by~az)a(by ~a;)abgady)]l ' !

Here a,y,2,3;, b2 , b1 , b0 represent the digits of the binary numbers a and b with the values 22 2l
0
2 .

In the original text is following an ivitroduction into the “ All " and “ Existahce " operators. Thezr impor- /"€ v
tance for General Calculation will be dealt with in the ** Plankalkuel >

The following chapter may also deserve interest :
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7) Formulas of Nonhomogenous Algebraic Dimension

A simple example are the already mentioned relations <,> . They connect numbers with each other, which!

however, do not produce another number but a Y-N-Value. In the expression ' .
(y=3x2)a (x>2)-(y>12)

operations with numbers and propositions are combined in one formula.

In this context the symbol = represents an operation.

N

P N
Al

Another exampleis: ~ " - -

s:lzl t? eq t= v%s_ (eq : equivalent )

The two formulas are E‘_quivalent and represent the same relation in different form.

Similarly, we can write :

. \4\
RPN % 3 ; v-t
- s.._:t_/\v—b-t—)s:...__
2 2

Here is logically exactly formulated what is usually put in plain language.

If we want to state that only the positive value of a squareroot must be consideted then we write: |

y>oay= X

. A well - known operation of nonhomogenous algebraic dimension is the scalar product by which two vectors

are connected and produce a scalar.value.

y=(o %)

8) Development of Calculations of Higher Order on the Basis of the Calculus of Propositions

It has been already shown how numbers can be represented by Y-N-Values. Now we will see how operations

with binary numbers, ¢.g. addition, can be performed with the Calculus of Proposition.

Our operands are the binary numbers x and y with the digits

Xg o Xj oo Xq 5 Xg Yo Yy Y1 Yo

We are asking for the sum z with the digits

2o 4 102y i 210 2

o -—

[ TS TR AR 2 8

.
» Twe

e

At first, we cdmpute the sum of the digits of each single digital position without considering the carry - over .

Itcan be O,L, or LO. The latter is a binary number with two.digits. The last digit of this number we call

¢; - Then, we estabish the following table for G

"..

F A

RPN

NP RV A

S e

B T o

gy
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5 Y M1
v !
0+0 =010 N . ‘
0+L =0L|L f
L+0 =0L|L
L+L =1L| 0. ‘
We can write : ¢; eq ( X * ¥)
We now calcula-tg the.carry - over notation d; , which indicates, if a carry - over has to be made from the
position i-1to the pBSiﬁon‘ i. This js the case, if the digits x; _; and y; | bothequal One, orif ¢; ;
and d; | are both positive : 4
dieqfxi A yiig) v (g A gy) | %
z; can be computed from c;-and d; . If there is no carry - over to the position i, ( (Tl ), then z; equals ‘
¢; » if there is a carry - over thgn Zi‘ 1is disvalent to ¢; . ‘ : - g
Zieq(ci ‘Y’di)‘-. ;
For binary numbers with four digits the formulas for addition are the following : ‘
' ~ f
(xg * yo) eqcy, | XyA Y, eq d; A eq z,

(x; 7 y;)eq e (x3 A yp)v(dyacy) eqdy (c; » d1) eqz
(xy » ¥,) €q ¢ (x5 A yy) v(dyncey) eqdg (cy = dy) eq z,
(x3b+ y3) eq c3 (x3 A y3)v(d3/\c3) eq dy (c3 » d3) eq 23

b s

d4 eq 2,

Thus is demonstrated, that the addition of numbers can be performed with the Calculusof Propositions. 1t ¢
is known, that the more complex :arithmetic operations can be reduced to addition and subtraction.

H
Consequently, arithmetic operations can be represented by operations of the Calculus of Propositions.
In the chapter “ computation of Formulas ” the difference between implicit and explicit expressions is dis -
cussed first. This is clear in normal algebra. The rules of algebra usually allow a simple implicit formula to
be transformed in such @ way that the wanted value stands isolated on one side of a equation. !

This is not always possible with propositional formulas. It has also been attempted here to develop general
rules for explicit representation in equations. But this development does not seem to be of pr&ctical impor -
tance. The * Plankalkuel ' has not been based on it. Therefore, this section is omitted here.

The following chapter is of importance for the *‘ Plankalkuel .

9) Inflexible Programs

A method, especially suited for calculating machines, is the use of programs which consist of a sequence of
operations which the machines have to perform in order to compute the results. For this purpose the inter - '

At bain T g = A b

At 2 B e e h P PR PR B e e e Fowatr N @ s

PN

haad
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mediate values have to be named, too . A simple method is that to number all variables including the input - ’

variables systematically with V,, V, ... and then to list each operation scparately :

For example :

[42
=48 4 /a’
X 2t4 b

T bV

v

Program .‘ A

Input values

~

Vl M 2 = V3
n'\V3 hd V3 = V4
Va—V2 = Vs
x“_..’\}\
Vs = Vg
V3 . (—1) = V7
Vy+ Vg = Vg = x4
V7—V6 = V9 = X2

2 and ~1 are the constants in this formula.
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- It can easily be seen that calculations of any length can be performed in the above way, if they can be reduceh

to the elemtary operations.

The program for a determinant of the degree three looks like this :

Vi
A =1V,

vy

___<
o
<
0
]
_<

it

t
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Vi o+ Vs o=V 3 V3 — V17 = Ve g {t*
X l!' .
Voo o V7 = Vy | Voa ~ Vig = Vs Y (}
“. .l 5
Vir + Vi3 =V Vas ™ Va1 = Vo6 = A vt
Va2 * Vis = Vo3 ,
: *
Such programs can be developed for any type of formula of homogenous algebraic dimension. !
Lo | .i
In propositional formulas,-the elemtary operations are s 4
roe . ~ . . ' i
A ’ v s [ ~o, /v ’ - ] :
¥
It is possible here to number the variables singly in sequence. ' g {
For example : . O
. (a/\b)v((:/\d) eq e !
a = Vl . \ ¥
' !
b=V, program : Vy A V, eq Vg | E
¢ =V, V3 A Va4 eq Vg !
d = V4 Vs v Vg eq V; eqe k

In principle, the shape of the program is the same as that for:ithe handling of numbers. Thus, we are able to
apply the program for the determinant also to Y-N- Values. Our problem is then the following :

The given elements are a; , by , ¢y, and a), by, ¢, . The relation R(x,y) means: “xfits y”. x we
»substxtute by a;,by,cp, y wesubstitute by a5,by,¢5. . Now we develop the matrix for the relation

R (x,y), in that we coordinate the elements a;,b; ,¢; tothelinesand a,,b;,c4 to the columns." F
Then the symbols + otézwattached to the nine elements of the matrix, which designate if the relation for 9
the corresponding pair is valid or not. In undetermined form the symbols are substituted by the variables % L/t

vl Vg : ' , !

t

V- @

b | Vs | Vs | Vg

If in the program, we now substitute the multiplication by the conjunction ( A ) and the addition or sub -
traction by the disjunction ( v ) for the determinant, then we get as a result a Y-N-Value, which indicates ,
whether a distribution of the elements al', by, ¢y ;a9,by, ¢y ispossible for the given elements Vy to
Vg of the matrix in which the elements of each pair fit together. The following problem demonstrates a
practical application : At a party of three ladies and three gentlemen not all possible pairs fit together. We
must look for a seating arrangement which will provide each lady with a gentleman to suit her.
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The formula of the propositional determinant renders the list of possible pairs to be formedgis follows :

(Vi A Vs A Vg) v (Vg A Vg A Va)v.. v(V3 A Vs A V) _’

Y
A

Different levels of programs also exist which. are similar to the different levels of formulas of homogonous al ~‘
gebraic dimension . The lowest level is again occupied by the programs with Y-N-Values. Since it is possible
to compile the higher level operations by means of propositional operations, it is in principle also possible  *
to compile numerical programs by the same means:

It is also possible to, compile programs of a higher level, for example those with complex numbers, by means .
of numerical operations. ™~ - - y

Furthermore, we are able to design programs in which matrices represent the input variables and in which !

the operations with thgm stand for the corresponding combined operations of matrix calculating. d

For the execution of such programs, the calculating unit should be designed to perform these operationg.. H

However, it will be advantageous to gmploy “ subprograms  for repetive computations. :
. \\ *
-~ L .. %

Programs for variables and operations of different algebraic dimension also certainly exist . They would requixE.:
calculating units for operations of different levels and storageunits for data blocks of varying sizes.

e

All these programs are of a fixed structure, which means that the type, number, and sequence of the variables ;
and operations are the same for all computations and that the content of the data only changes.

Flexible Programs

Contrary to inflexible programs, High Level Programs handle programs in which the input variables in - 3
fluence the sequence and type of operations. If an employee gets a monthly salary of less than RM 300,~ '
he is not obliged to pay for health insurance. The computation of the reductions is a function of the salary.
Another example is the computation of the area of two plane figures which may or may not partly overlap ¥
and where the overlap area is only to be considered once . Again this program varies, depending on the input }
variables.

In principle, it can be demonstrated, that such variable programs can be reduced to inflexible programs if
large sections of them are allowed to run idle. So a program for a full matrix can be used for a reduced matrix
in which some of the elements are equal to zero. This method is not economical however , because numerous !
multiplications by zero have to be performed quée_:ssarily.

The programs for the ““All ” and ““ Existence  operators with series of conjunctions and disjunctions are
another example. These operations must be executed for all elements with an inflexible program. This method
is redundant, since the Existence Operator already yields ,, positive ™ as soon as the first positive element
occurs. Likewise, the All Operator already yields ,, negative ”, when the first negative element occurs. In this
case the variability of the program is the length of the compution.

As far as is possible upto now a summery of the different types of programs is shown as follows.
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I. Inflexible Programs

a) Programs of homogenous algebraic dimension

1) For Y-N-Values . ) ,
2) For real numbers ‘ ; ’s !
3) For complex numbers .
4) For vectors, matrices, etc.
b) Programs of nonhomogenous algebraic dimension
‘ I FJEX'EQle’Programs : !
- N

This survey is not generally valid. We are able, for instance, to put another level between 1) and 2) for pro -

grams in which only single additions occur and where the arithmetic operations for real numbers are reduced
to additions. SN S

P

The flexible programs represent thé true field of higher level combinatorial computations. However, it is not R
yet possible to deal with them'here gt this stage. ' }
AN ;

i

These Flexible Programs will be a special subject of the Plankalkuel . :
£

In Chapter 2 the application of the Calculus.of Propositions to relay circuits is discussed. .

B

At that time ( around 1940 ) publications by Shannon and C.H, Piesch which already existed, dealt with
problems of switching algebra. The Calculus of Propositions and the laws of switching are systematically o
compared in chapter 2, contrary to their treatmentin those papers. In this way - in my opinion - the problem

became much clearer. The application of the Duality - Principle for Propositions to relay circuits proved to ¢
be very advantagenous. '

Furthermore, different types of relays are discussed, e.g. the mechanical switching element, the electro -
magnetic relay, and the tube - relay { based on the research of Dr. Schreyer ). In order to become indepen - b

dent of certain relay techniques I introduced an * Abstract Switching Representation ” .

Nevertheless, these investigations are of no direct impartance for the ** Plankalkuel .
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Prof. Konrad Zuse

COMMENT OF THE * PLANKALKUEL ” !

Introduction

The ** Plankalkuel ” was developed by me in the years before 1945. I wrote the following comment in
1972. The * Plankalkuel " — hereafter called PK — is reproduced with this comment in its original form:
It was translated into English in 1974. In order to facilitate the understanding of the PK this comment
occasionally refers tor algorithmic languages in use today, like Fortran, Algol 68, PL /1. '
' i

e

The term * Kalkuel ” ( calculus ) does not correspond to its meaning in mathematics in a strong sense.
It is more what we call an algorithmic language today. }
n.\ ’ g

First, I want to comment on the development of the German computer upto 1945, the year in which the

PK was established in its final form. . ¥
- \ 3

RN ¥

A) Development upto 1945  *" - ;
The German computer developed entirely independently of those developed almost simultaneously in the :
United States and other countries. ' i
I. Development of hardware e

1) 1934 : I was a student of civil - engineering at the Technische Univessitit Belin - Charlotienburg ;

and had already developed the basic concept of a program - controlled calculating machine with the

following features : ) , N
a) Program - control by punched tape with one address code or three address code.
b) Application of the Binary System to arithmetic unit, storage unit and adress - coding.

v ¢) Floating point representation ( at that time I called it “ Halblogarithmische Form > ( semi - §
logarithmical form ) . i

d) Application of Bi - stable switching elements, e.g. relays. H

II 2) 1936 : I began to construct test models, the first was model Z1, in a purely mechanical technology.
I developed a “ Mechanische Schaltgliedtechnik  ( mechanical switching element system ) . This
model was completed about 1938; but it was operable only in some parts. ( E.g. the arithmetic unit
in binary system with floating - point and the storage unit ). : !

3) 1938/39: Construction of the model Z2. Its arithmetic unit had electromagnetic relays ( fixed -
point binary representation with 16 bit word length. ). This model was also a test model. But it !
demonstrated the feasibility of my computer development.

4) 1939/41 : Construction of the model Z3. This was contructed using electromagnetic relay - tech -

nique solely. ( Binary system, floating point, 22 bit word length, 8 - channel code for punched tape
control, 64 - word storage. )

The model Z3 was completed in 1941 and was the first completely functioning program - control -
led calculating machine in the werld. A number of mathematical problems were tested on it !
( linear equation - system, } quadratic equations, determinants, matirces, and special aerodynamic
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problems, e.g. wing fluttering ) .

The Z3 computer was destroyed in an airraid in 1944 . . e

5) 1942:Contruction of a special computer model S1 to measure the wings of guided missiles.

This computer was installed in the production line for the HS 293 ( Henschel Flugzeugwerke )
guided missiles ‘fmd was intended to eliminate the wing - inaccuracies of this missile with the aid
of a spe'cia,l. calculation. (Electromagnetic relay - technique, binary system, fixed point, sequential

hardware pro};r_aﬁi -with rotary switches. )
. . ~ '

6) 1943/44 : Construction of the Computer Model S2. It was built for the same purpose as model S1,
but the metering clocks were connected directly to the calculator and were read automatically
through the program ( Analog - to - digital conversion ). This application represented the realization s

of the first procéss - control by a computer in the world.

7) 1942/45 Construégiqn of the Universal Program - controlled Calculator Z4. This compute; re -
presented an extension of thé'ﬁcpmputer Z3 ( electromagnetic relay - technique , binary system,
floating point, punched tape control, mechanical storage unit, originally designed for a capacity of
1024 words ). The computer was completed at the end of world war II for the computation of
simple programs; 5

8) 1944 : Construction of a small test model for Propositional Calculus in relay technique.

oy

9) 1937 : In cooperation with Dr. Schreyer the first steps towards the development of electronic «
computers were undertaken. First Dr. Schreyer constructed a test model fitted with electronic tubes

( see thesis of Dr. Schreyer ) . '

\ .

‘ 10)[ 1940 - 45 : Dr. Schreyer contructed another test model using electronic relay technique at the '

Technische Universitit Berlin - Charlottenburg with an arithmetic unit of 10 binary digits. .

. 11) Around 1944 : Dr. Dirks constructed a test model with a magnetic storage unit ( disc ) and simplei.
. electronic calculating units. This development was performed independently of the work of Dr.
Schreyer and myself. Dr. Dirks and myself had no knowledge of each other until 1952.

I1. Development of Software

1) 1936/37 : Development of a “Bedingungs - Kombinatorik ” ( Conditional Calculus ) . The con - !
'sequent use of the relay technique, in other words, the application of construction elements with
two distinct stages induced me to analyse theoretically the rules_which such constructions and cir -
cuits follow. This resulted in the *“ Bedingungskombinatorik . Later on , I realized that my calculus
was formally identical with the Calculus of Propositions.

In this way I created “Schaltalgebra™ ( switching algebra ). Now I was able to design my computer
models in an * Abstrakte Schaltgliedtechnik * ( abstract switching element technique ). The mecha -
nical * circuits " of the model Z1 essentially corresponded to the electromechanical circuits of my
later models Z2, Z3, Z4 .

The switching theory also facilitated the design of our electronic computers. Schreyer only had to
develop electronic switching components for the propositional operations Conjunction, Disjunction ,
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and Negation and to connect them in accordance with the theoretical circuits already developed.

2) 1943/44 : Ansiitze einer Theorie des Allgemeinen Rechnens ( Statements of a General Calculation
Theory ) . I elaborated the concept outlined in II. 1) with the intention of makmg it the sub]ect
of a doctor - thesis. An extract of that paper has been enclosed because it will facilitate the under -
standing of the PK .

P T i T T R AT R

: ‘
3) 1943/44 : Preparation of a general purpose algorithmic language ( PK ) in the form of some notes.

III. Design of Computers during World War 11

My computer model's -constructed during the war, were ordered for military applications. Because of
the limitations of personnel and material they aimed at cleary definable goals , ‘which I could achieve '
with the limited recources and limited deadlines then at my disposal . The possibilities of my swit -
ching algebra were- systematically applied. Consequently with regard to their logical design, I believe
that my computer“{node!s may have been well ahead of the contemporary developments in the USA.

B Al

e

-
v

Nevertheless, I intentiously made no use of the facilities of conditional instructions, address trans™
formations and others, stnce | gopld not run the risk of increasing the capability of my computers
without adequate recources for .t\l{éir realization,, e.g. the construction of storage units of the required
high storage capacity.

R T A P R R

s e

Despite this, I already designed during World-War II several theoretical models which utilized logical
instructions, program selection, address computation, and the facilities of my Conditional Calculus.

I already realized then that computers must also be able to store programs as well as data. But to me
this capability seemed to be such a self - evident requirement then, that I omittet to apply for a

patent for 1ts.reahzatxon) h ,! H - J@‘ kh‘ 200 (‘_;ew WE L ’

e aatad

Some of the aforementioned capabilities were incorporated into the design of the Z4 model which was
in construction during the war. They were realized practically, when the Z4 model was installed at theF
*“ Eidgenossische Technische Hochschule ”” ( ETH ) in Ziirich in 1951-. !

b
I was then particularly occupied with the problem of content addressable memories, and the organisa .
tion of storage and retrieval( this term may not have been used in 1945 ) of data of varying struc -
tures as outlined in the PK.

Already in the years between 1937 and 1945 I had in mind to construct a special - purpose calculator!
* Planfertigungsgerit ” for the Construction of programs in addition to the usual computer for the
execution of numerical programs. Actual development, later, went in a different direction . The ordi -
nary computer was improved step by step to deal with logical problems. The problems of my * Plan -
fertigungsgerit » are solved today by compilers or generators on ordinary computers.

Most of the theoretical studies which I undertook during the war remained on paper, and of these ,
most have been lost. '
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IV. Knowledge of Other Developments

As already mentioned, developments other than mine and that of Dr. Schreyer were performed inde -
pendently. I only became acquainted with the fundamental work of Babbage in 1938, when I was

B

applying for a patent in the USA. Moreover, I had no knowledge of the very imponam'\'norks‘ of Turing

(*“ On computable numbers ”) , and the Switching Algebra of Shannon. Only by accident in 1944
did I learn of the Aiken computer, USA. However, the picture of the MARK I computer supplied by
the German secret service could give us only a general impression.

B) The Situatiop in 1945

Most of my models wﬁ‘i‘cﬁ' were constgucted during the war in Berlin were destroyed in airraids. Only the
Model Z4 could be saved in an adventurous truck journey from Berlin to the Alps. There it was hidden
in the small village of Hinterstein, Allgiu.

Y ‘
At that time, however,.it was not possible to continue with the construction of the machine, My small
staff of 12 dispersed. .

K

. \.\
So I had sufficient time to- cbn’tinue".‘vgim my theoretical investigations.

The Model Z4 could hardly be operated. Moreover, we did not even need an algorithmic language to pro -
gram this model. v :

[

— P
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In those circumstances 1 developed the PK as a desk - work theory, regardless as to wether suitable equip ;

ment for its implementation would be available in the near future.

C) Comparison of the PK with Other Algorithmic Languages

With regard to the aforementioned facts, the great difference which exists between the concept of the PK
and the development of programming languages which were started later can be understood.

Cobol, Fortran, and Algol, for instance, were introduced in the years between 1950 to 1960 to satisfy
the demand for programming facilities for the computers which had already been constructed and put
to use. Accordingly, these languages corresponded to the daily occuring problems. Numerical problems
were of major importance at that time. Only slowly did a trend develop-towards universal calculation in
the sense of the PK.

Then, however, I was quite alone with my PK - oriented concept . Contrary to the lively interest which
my hardware development met with, my work in software { the term did not then exist ) was hardly
noticed. I discussed the PK only occasionally even with my best friends and my closest teammates. And
then we disagreed, even in the essential concept; Moreover, the influence of the American developments
was exceedingly strong at that time and dominated the general thinking,

The indifference towards the PK was somewhat disappointing for me , when the official discussions about
Algol started in 1955. Some of the participants had sufficient knowledge of the PK to cooperate and in
my opinion it would only have been fair if they had openly announced and utilized the ideas anticipated
in the PK.

14
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There are algorithmic languages available today which are also efficient from a logical point of view such -

as PL/ 1 and Algol 68. They offer some facilities, already contained in the PK, and beyond that, some
formulations which facilitated the practical operation of computers.

A -
~
‘

This shows the decisive difference between the PK and all of the programming languages developed l}ater :
the goal of the PK is, to formulate the computational and logical coherence of a program by explicit and .

univocal instructions, but the PK does not attempt the practical execution of programs. There is no ** imple -

mentation™ of the PK

In contrast to that} t'hg,gq'odern algorithmic languages developed through the practical use of computers . *
This is manifested by the input - output and transfer statements ( READ, PRINT, PUT. etc. ), further - }
more, by facilities for the runtime organisation.

The PK was originallydeveloped in the form of a two - dimensional representation. This form would havey
to be transferred into a seqllence of characters, as is common with the other programming languages for +
the execution of programs . . . E
AN .
In view of the previously described sntuatlon in 1945, it is obvious why I was not concerned with progran"
for numerical calculations when I developed the PK. I did not expect any difficulties in this field then , =
and consequently I concentrated my efforts mainly on the logical problems beyond the common numericef
calculations. These circumstances may later have been the reason for the opnion that the PK was not the”
right base for the development of algorithmic languages. Moreover , the PK was almost unknown. After
the completion of the PK in its preliminary form, I became completely absorbed by the management of
a computer plant of my own. Besides that, for a long time no computers were available which could be °
applied to higher - level logical problems such as those exemplified in the PK. As a consequence of all
this the PK was not published and remained sleeping in a drawer of my desk. F

Today computer techniology has arrived at a stage where the discussion of the problems treated in the F
PK have gained great practical importance.

D) Future Importance of the PK

This paper is being published in order to compensate for the timely publication of the PK omitted in the
past. Of course, we have to look at it differently today than we would have then. '

In this paper I will not yet discuss in detail the question as to what extent considerations of the PK can
be applied to future developments of algorithmic languages. But I nevertheless want to state that I believe
that basic reflections are necessary. At present, tendencies in the field of the theory of formal languages
and the problems connected with them diverge considerably. On the one side there are the ambitions™
of the people directly involved in the practical use of computers. Their interest is directed toswards
flowcharts of problems, easy unplementatlon and the development of compilers and operating systems

On the other side a definitely theoretical tendency exists to solve the problems of the formal languages
by means of modem mathematics. Although some useful theoretical knowledge has certainly be achieved,
it cannot as yet be stated that these endeavours have produced results of importance to the computer
 software, if related to the investment.
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I can only suggest that these problems should be considered now. In another paper I hope to be able to

offer a c'oncept which will be based on a solid theoretical foundation and, nevertheless , be applicable
to practical problems.
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THE PLANKALKUEL '

Comments of Chapter 1 ‘ .l

General Programs

11. 1) General Notations for Classification

The PK has adapted the method of Babbage to number the occuring variables systematically. In simple
programs the numbeys correspond to the addresses in the storage unit of the computer. This method can
be extended for more complrcate programs. In an algorithmic language , for instance the following notati !
ons must be dxstmgurshable through different codes : _ . '

Variables , intermediate values, results etc. ( nowdays also called ObJCCtS parameters )

Stguctures types and modes of data ‘ ‘

—v e

Components of structured data, selectors
_ Programs subprograms, procedures, functions, operators , etc.

Marks gf labels for program request

LI IWE VIR T R 8

In the PK numbering and digital coding are used almost exclusively. In contrast modern algorithmic
languages allow more freedom through the use of identifiers.

.
¥ el

-

II. 2) Data and Their Representation

The specification of the structure of data distinguishes the PK probably most from other a]gorrthmrc

languages. In the PX the structures are systematically developed out of Yes - No - Values. In this way
tree structures which can be as complicated as necessary can be generated. From the beginning it is t
assumed that these structures may be variable themselves ( e.g. a list with a varying number of elements , '
an array ( row ) or in the case of an array ( row ) of characters a “ string ” ). The term * List ” is used F

N N g e
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in the PK in another sense, than in modern ,, List - Procerring ” . : e

The indeterminate strucure characters ¢ , « allow a variability of the structures and types of data
such as can scarcely be achieved by the modern algorithmic languages The operator N ( V ) in the PK
corresponds to. the operator upb in Algol 68.

IL. 2) b) Limitation of Data

The “ limitation of data » allows an accurate definition of the elements within the set of different values
of a specified structure. Similar formulations are used for instance in PASCAL.

II. 2) ¢) Types of Data

In distinguishing between types of data, the PK not only deals with pure syntax but also considers semantic
aspects. However, in the following chapters only limited use has been made of this facility.

IL. 2) d) Modes of Data

The introduction of the notation * modes of data ™ is advantagenous, sinse it does not enforce an accu - |
rate definition of the data structures in every case. This corresponds e.g. to the presently used notations
“REAL ”, “INT ” for the specification of numbers.

MN
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11. 2) ¢) Components of Data

)

In the PK the components are always numbered upwards, beginning with zero. This correspondd 1o the |
indexing of the digits of integral numbers, where the position of the lowest value is assigned the indéx
zero, ( corresponding to 2°=1 in the binary system ) . This method of starting to count with zero ,
also corresponds to-the fact that registers in a calculator have a starting position corresponding to zero
( all elements reset ).' This has the disadvantage, that the index for the highest elementis n - 1 in a list
of n elements. M_Qt\iern languages allow more freedom in this respect. There the upper and lower bound
of arrays can be chosen randomly ( ALGOL 68 ) . '
. - : \

Since the PK uses tree structures, the components'correspond to the possible branching points of the tree.

In the PK there are no mnemonic notations for components like Re( v), In(v) as there are in

~ Algol 68, for instance which select the real or the imaginary component of a complex number.

A\

- PR

Since only tree structures are directly defined in the PK , it is consequently not possible, for instance to
define both the components"i_‘ row:i ” and “ columnj” of a matiix directly. If the matrix is defined
as a set of rows then Ki .means ;&y i . If we want to select the column j then we must select the singl
elements of the matrix and then assemble them in the column , for example :

o A

LT N

(ko,j;Ki,j;..Kn,j)

The PK , however permits to write a special program for this task which is applicable to all matrices
mxn. ' '

Eaadad

L]

IL. 2) f) Representation of Data

‘The beginning of this section contains the important operation concatenation of data, which corresponds f
to the inversion of the operation ,, selection ™ of components. ’
| }
The sequence of the components is now of importance. The natural sequence begins with the components
to which the lowest index refers. In contrast, in the normal notation of numbers the digits with the high 1
est index are written first. Therefore, we must look for a compromise. This would not be necessary for
an internal representation in a computer, because there the digit with the lowest index is also trans -
ferred first.

In line with its basic concept the PK uses simple characters for the determinate notation of Y-N- Values !
(- +; or O,L ). The algorithmic languages developed later did not systematically utilize Y-N- Values

as their base. Only in revised versions did they supplement the mode Boolean with the values !
“ true ” and “ false " . This may be sufficient , as long as Y-N-Values are only of minor importance in

a program. The use of the symbol o as anindetermined Y-N-Value is sometimes advantageous, but

~ avoidable. This method could be extended to random data structures by the assignment of a non - special
character to a certain structure. This is frequently applied in algorithmic representations through for
instance the use of the digit “ 9 ™ as a representative for decimal digits and the letter “ x ” as a re -
presentative for letters ( e.g. 999.99 for a decimal number with 3 digits before and two digits after the
point in COBOL ) . :
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II. 2) g) The Two—Dimensional Representation

An important feature of the PK is representation in different lines. Its advantage lies in the fict that.it
gives the human user a good survey. We have to remember , that the PK in its form displayed here was s
designed to realize a univocal representation of complicated algorithms. For implementation, the programs
of the PK must be converted into the form of a linear series of characters. This can undoubtedly be
achieved by representation methods which correspond to those of modern alogrithmic languages.

The representation in lii'i'es‘allows the introduction of a special line for the specification of structure
characters ( mode indication ) . This corresponds to the " declarations ” in modern program languages.

The data in the structure line are often redundant and may be omitted then.
«l\ 4

I1. 2) h) Constants

Constants may obviously also be,‘direétjy defined in determinate from by a notation of their value. =~ *~
Y .

-~ ‘-

. T,
IL. 2) i) Supplementation of Data by Numbering of Components

The operator I ( ) simplifies the handling of lists in a similar way to the operator N () . I'() corresponds
to the operator elem N () to the operator upb in Algol 68.

IL 2) j) Data of Fixed and Variable Structure ~ «

The term * variable structure ” corresponds to the term arrays with flexible bounds in modern algorithmic
languages. ' '

1. 3) Chapter 3 — Fixed Programs

The distinction between fixed , quasi-fixed , and free programs in the PK is a consequence of its history . -

—-—
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The first computers, that of Babbage and my models Z1 to Z4 , were consciously limited to fixed programs}

Babbage, even , was already aware of the conditional instruction , but did not apply it in the model which
- he constructed. Today , nearly all programs in use are free programs in the sense of the PK. Therefore, it
is not to be recommended to adapt the terminology of the PK. Fixed programs are now-a-days called
strict sequential programs ( without branches and loops ).

The rules and terms defined in chapter 3 are valid for quasi-fixed and free programs.

II.,3)a) Designation of Programs

As already mentioned, the programs are designated by indices in the PK. This has its advantage for syste —.
matic classification but has, without doubt, some disadvantages too. In may cases the modern use of -
identifiers for programs is of considerable advantage. '

Some exceptions to its strict rules are also allowed in the PK.

I.3)b) Yariablesi of a Program

Classification into the four categories « — § facilitates the understanding of a program. In other program
languages these differences are normally not so strongly emphazised, since random notations are allowed
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there , instead of the PK characters V;, Zi . Ci , Ri . The role played by these values can frequently be
~understood only with the help of the program.

The values listed under a to § correspond to the variables in common mathematical formiikas. 4~ -

II. 3) ¢ ) Range of Indices

In the PK the scope of the variables, intermediate values, etc. is limited to the program for which they

are used. Such a simple and strict rule does not always exist in modern languages because of the use of
* block structure ™. The difference between ** local * and * global ™ parameters in modem languages

has not been relevant Torm the start in the PK, since in the latter all mentioned parameters are local

( e.g. FORTRAN or COBOL)

1. 3) d) Marginal Data Extract ( Randauszug)

L1} . 4

In some way the “ marginal data extract ” corresponds to the parameter or specification list of a procedure «
Or program rnodﬁle in modern prograhimmg languages. - .
* \

)
a

N > ., “\; . .
The input values may be substituted by * global parameters ” , if the associated program to which they
belong is inserted into the frame of other programs.

The Data Extract itself is not part of the program , but only coordinated to it. By this convention, the
*“ program ” of the PK is confined to the instructions for the calculating process. This concept differs
from the modern concept which includes the declarations as unexecutable statements in the term

* program ” '

1. 3)e) Assigrrmeni Statement and the Assignment Symbol

The symbol = of the"PK corresponds to the symbol : = in modern programming languages . The rules
are essentially the same for both symbols with the difference, however , that the symbol = must point
to a following result, while the symbol : = must follow the result which then stands left of it.

The representation of the PK corresponds to the course of the actions during elaboration . On the left
hand we have the old values, on the right hand the new ones. :

The symbol : = has been chosen by mathematicians in accordance with the definition - symbol :: = of
symbolic logic. Their concept is of advantage in that the calculated value is exposed and easily readable
at the beginning of a line. But this difference between the two concepts is not very relevant.

11. 3) f) Subprograms

In pnncrple the PK does not distinguish between main-programs, subroutines, procedures functions, etc.
Any program can be used as a procedure.

The rule that any result of a program can be used as a function identifier is very useful. It allows the
easy use of programs as subprograms within the frame of a main program.

Indenpendently of this general rule, it is possible to denote special subprograms ( PZ,U... ) in the PK .
This has an effect only on the scope of the variables.
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I1. 3) g) Operation -Symbols, Function - Symbols

From a logical point of view there it is not necessary to treat operations and functions seperately from y
the programs. Also the PK prov:des the possxblhty of using the notations with whxch the mathemaucxan . f‘
is familiar. e o
. !

I1. 3) h) Remark P ¥
A special notation for “ comment ” is missing in the PK if it is compared to other algorithmic languages. ?
Naturally, the following examples occasionally contain comments. However, since the PK.is not designed i'
to produce progga‘rps. ready for complication, it is not necessary to mark the comments specially, in order,
to instruct the compilet to jump over, them. . 1
. Ad
I1. 4) Quasi - Fixed Programs 4

The introduction of the term * quasi - fixed programs * resulted from my concept at that time , of deve %

o !
loping special machines for the composition of programs ( Planfertigungsgerite ). In this sence I syste -, -
matically investigated the pQ551b111ty of program variations. No computers with essential facilities for varia}
tions of the course of the calculandn existed then. The following chapter-only is a typical example of :
merely theoretical desk work. Later around 1955, the development had gone other ways. ;

II. 4) a) - e) I scarcely used the variations mentioned in these sections in later examples of programs g

IL. 4) €) Variable - Structure - Symbol .

s

This section, interestingly, contain a remark about the storage of programs at the end of it. As already
mentioned, this facility was self - evident for me. Nevertheless, the content of this section does not -
concern itself with the essential aspects of the problem .

-

11. 4) f) Variation of the Number of Components of a Structure

This variation of a program is, perhaps, the most important one. For this purpose, this facility is achxeved
by the introduction e g of the mode stnng in modern algorithmic languages.
: H

I1. 4) g) General Considerations about the Variation of Programs

e

The variations of programs mentioned in this chapter indeed furnish the PK with some of the characteristics
of a calculus. In 1945, the term * algorithmic language ** in its present meaning was not yet common.
What I had in mind with ** Rechenplanfertigung ” in the PX is only hinted at there in principle. This

holds true especially for the remark in section II. 4) b) on the coordination of structure - symbols to l
operation - symbols. To realize, that it would be necessary to fransform the formulas of the PK into a
fixed sequence of symbols, in order to be able to perform symbolic calculations ( see chapter 4 : Ope - i
rations with Algebraic Expressxons ).

II. 5) Free Programs

As already mentioned, the “ free programs " in the definition of the PK represent the common form of
programs as they are used today. Fixed and quasi - fixed programs may be considered as a special form
of free programs. '
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IL. 5) a) Variable End Symbol

The Variable End Symbol is the simplest form of a branch instruction. It corresponds to the nowadays !
so called LEAVE or EXIT statements. It allows the univocal programming of a complicated calqulation

composed of many main programs and subprograms In other algorithmic languages this function is *
achieved by conditional statements ( IF, WHILE ) or by GO TO - statements and labels.

The GO TO statements are often the source of errors and can even be always avoided. I assume that the
PK Fin Symbol is more fool-proof.

N : \
1t is also incorpqrated‘i‘n thg PK the method, now common of enclosing program parts between brackets
to which the end symbol FIN refers. In some algorithmic languages symbols like BEGIN, END are in —

stead of brackets to specify program parts. But their effect extends still further,

r——

’

-

I1. 5) b) Conditional I?rogram Parts

This is again one of the mos} important types of conditional statements. In other algorithmic languages
symbols like IF, THEN, ELSE, WHILE FI are used for the same purpose. The PK knows only the
simple condition, which i$ no altemanve to THEN ... ELSE . Naturally , this is only a question of eco -
nomy of representation. The extended modern form certainly has some advantages.

II. 5) ¢) Variable Indices

The Variables Indices represent another important form of variable instruction. Today, we also call this ;
~ facility * transformation or computation of addresses ”

. ®
The broken lines  are more a picture - writing than a representationby symbol. Remember, that the
from of the PK presented here is primarily designed for human understanding in contrast to the Computerf
In order to feed compilers etc. the PK must be converted into a sequence of symbols.

The representation used in the PK allows easy distinction between the structures of components and
their indices. . t

I1. 5) e) Computation of Programs

See the comment referring to II. 4)

I1. 6) Repetitive Programs ' l

Repetitive Programs of the PK correspond to the WHILE DO- statements in modern languages. In the PK !
the different possibilities are represented by W - instructions Wo toWg . The following modern notations
for example correspond to the formulas Wy to W :

Equi\}alent Constructions in ALGOL 68 :
W () [P)=TOnDOP

W, () [P ()] = FOR i FROM 0 TO n—1 DO P (i)
W,(n) [P ()] = FOR i FROM n—1 BY ~1 TO 0 DO P (i)
Ws(n,m) [P ()] = FOR i FROM n TO m—1 DO P (i)

P
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W4(n,m) [P ()] = FOR i FROM n BY —1 TO m+1 DO P (i)

Ws(nm) [P (D)) = . .
IF n < m THEN : : AR
FOR i FROM n TO m-1 DO P(i) !
ELSE
FOR i* FROM n BY -1 TO m+1 DO P (i)

FI . -
oo\
. .
LRI

The modern instructions permit specilication of the upper and the lower bounds and the step width. This
is undoubtedly more elegant.

From a modern point of view the rules W and W seem to be 189 specialised.

II. 7) Programs of the Predicate Calculus : -
v A

Mathematical logic, in particﬁléf-th.e“";propositional calculus assisted me most effectively in the development

of a switching algebra. This caused me to investigate , especially the Predicate Calculus. I soon recognized

that this calculus in particular was suited to the simplification of programming tasks. This finding has been

discovered again recently and has led to the use of this calculus for the description of data and structures
of programs e.g. VDL ( Vienna Definition Language ) . The Predicate Calculus had already been applied
inadvertently for data processing before the introduction of computers. This holds true for nearly all
punched card operations. The selection of special cards from a stack corresponds to the operator,

2P (x)

“ Those x for which the predicate proves to be true ™ .

In a similar way, the other operators of the predicate calculus can effectively be used too. This becomes
obvious in the development of chess programs especially. In them we very often have to formulate
criteria as follows : ** There is a square , occupied by a white officer which is under attack by a black
piece " . To formulate such a task accurately we need the operators of the predicate calculus.

" 1) The “ variable of third stage ” of the PK does not correspont directly to the Referenceconcept for
instance in Algo! 68.

2) The first character R forms together with o a special symbol Ro . The second R means ,, result .

3) The statement R = V € V is a comment.
-0 o 1

4) In the following program the relation Ro is dependant on the predicate P ( Z ). Therefore the list

Z, must be investigated from the beginning after the evaluation of ux .

5) The chapter * Computer Processable Programs * was not written any more .

-
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I1. 8) Miscellaneous

.
4, .

11. 8) a) The operators AR, VR, eR ,IIR . In the abbreviated notation the initial statements

+=R,-=R,0=>R,1=R are omitted.
o ) 0 o

1L 8) b) Reprgsentation of Powers

Common mathémati‘c"’a{ Jepresentations are not only sequenees of symbols, but rather a composition of
symbols, picture - writihg: and topological positioning of symbols ( e.g. indexing and raising to powers ).
The form used in the PK is similar to picture - writing as the symbol 1. proves. Modern algorithmic ‘
languages use the symbol 1 or **,

N ’

. IL. 8) ¢) The term ““‘list ™ used in the PK corresponds best to the term “ array. ” or “ row ” in modern
algorithmic languages. Something different is now understood by * list - processing ”* , namely a mettod
for the linking of different qle‘mentithrddgh additional information (pointer) about the adress of the ;
following or the preceeding element: -

Instead of '

V=27

vio 0
s OXgo

the following expression is possible too :
V=2>ulz ‘
o s

OXo

w<

II. 8) d) The Statement Symbol

Et

The Statement Symbol  » * 1 took from Mathematical Logic. It is not included in the syntax of the
PK , but is also relevant only for comments. It demonstrates, however, my original intention, of extend-
ding the PK beyond the borders of an algorithmic language.

Comments of ChapterIZ’ -

The general programs of chapter 2 represent a fundamental library. In modern algorithmic languages
some of these programs can be realized only through special operators. Here the advantage of the PK
is obvious : that all its data structures are developed systematically on the basis of Y - N —Values .

The following classifications of the programs are classified according to the structure of the input -
values and results. '

Normally, the programs are numbered sequentially. In some special cases names are added in form of a -
sequence of characters. As already mentioned, comments are- not marked as such (e.g. P 1.18 , suppo -
sition ... ) .

P1.26, P1.27 The Formula V+1 is based on the supposition, that the operation addition belongs to -
o :

 the standard implementation.
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P1.32, Pl&’s The inclusion of the “ signal ™ into the PK does not require special rules as for instance
PL/1 does. The normal result R is only supplemented by an additional result R

P1.36 Operators like Ub often belong to the standard statements of algorithmic languages today. The

correspondmg program then takes the following form : T,
bool 3 | *
int a
: if a t_h._ :=b
else =0 fi

There are _éllr}:ad‘}? more elegant representations available for the same program , e.g.
c:=(aiblio) ( Algol 68)

P1.39 Here we suppose that 2= n is already defined respectevely that this operation belongs to the
standard implerttentation . It would certainly be possible in this simple case to set up a program
for the evaluanon of m as a function of n.

The expression P—R1~.9 A R\\) reptesents a comment.

P1.40 The series of bits Yy is shifted to-the right in the direction of the higher indices, as many steps
as \{ as a binary number indicates.

The program is incorrect. 111 means ,, overflow > and is omitted in the marginal data extract.

P1.104 In the extended language of Algol 68, for instance, the operator Maj can be represented as
follows :

0:=(Vo< VI[Vo|Vl)
Maj, Min, Ord are semantic notations.

' P2.8 Note that the letter R has unfortunately been used both as a symbol for Result and for Relation
as well.

IV. Calculus of Lists .

The use of the term * list ” was already partly explained on pége 34 The following programs are often
presented both in implicit and in explicit form. The implicit form is a comment, the explicit form is the
proper program. ' '

P3.11 This program can also be presen'ted without u- operator according to P3.10.

P3.12 X in this case is regarded as a binary number.

- P3.26 Note that only the explicit form is thé proper program. .
P3.27 The symbol & means equal in the terminology of the Theory of Sets. X, g and l(} are in

fact not three different sioragecapacity requiring lists. For such a program the introduction of a
“ transit - value T ” replacing the three lists would be convenient. Then the statements :

V=2Z and Z = R
o .o o o
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could be omitted in the program. ) f &

The program P3.27 is incorrect. For the condition A !
z2<z !
\4 1 o N ‘
K € . . - a . ) ' M
Silo o ‘% :

must be introduced an intermidiate value % . (' € may be influenced by the first statement ) . X »
‘ : PR
P3.30 Note the different meaning of % and X ( chapter 1, PK page 45 ). The current value € is A
part of the structure index; consequently it must be lifted to the main line. ,
P3.66, P3.67 In the PE( the selection of specified sections of a list is performed by special programs. This «
is achieved in Algol 68 through-special declarations , e.g. ** trimming ” . For the construction of a \ ;

%
compiler the method of the PK may be more advantageneous, since it does not request special
provisions to be made. :

P3.68 Here the PK is applied as a true calculus to transform the implicit form into the explicit form. !
P3.71With the PK I tried to develdp a “ list - calculus -, distinct from the * theory of sets ” in that- it P
met the needs for the.soluuon of practical calculatmg problems. It is an essential fact, that the ele f
ments of a list , which represénts a set, are always stored in sequence. ;
H
V. 1) a) Graphic Representation by an Arrow - Diagram i
This kind of representation has been extended lately to the Theory of Graphs. For practical problems -
this theory is mostly covered by the Calculus of Relations., as stimulated by the PK. E
P4.43 The program is incomplete. It includes circles spezified by P4.41 .
P4.48 - P4.52 The following developments in particular demonstrate the application of the PK as a '
calculus . Implicit and explicit expressions can be represented by the same syntax. .
I hoped that the application of the Relation - Calculus to computers would be very effective ( see F
for instance the graph - theory ) As a civil engineer, 1 had in mind to use the Relation Calculus for ¥ t
the formal representation of static constructions such as Framework . Nowadays it is every - § o
day routine work of civil engineers not only to use computers for numerical calculations but also !
“ X for the organisational operations referring to the structure of the system. Nevertheless, modern '
programs were not developed as solidly on the foundation of general programs for relations as
is the PK.
The programs are partly incorrect Referring to u' see page 45 . C [45—

P4 52 Here the advantages of the Marginal Data - Extract can be recognized. All results R g can
be inserted into other programs as individual function - symbols also. !

P4.52 The encircled numbers do not belong to the program proper, but are only hints for the textual
description. The elaboration of the program is univocally determinated by the bracketing of sub -
programs and the Fin - symbols.

During the textual formulation of the program P4.52 I realized that the pointers @were very
helpful for an understanding of the programs, I had in mind to introduce this method of programs /
control into the basic syntax of the PK* This would have corresponded to the GO TO statements -




and the use of program labels. But I hesitated to take this step since, at that time, I did not have a
satisfactory overview of the possible consequences.

We have, in fact, learned meanswhile that the GO TO statement can be highly dangegbhs. In"*
principle, it is not necessary since it can be replaced by other perhaps stronger rules as is done in
the PK with the FIN statement. On the other hand, the GO TO instruction in many cases allows
very elegant solutions. Therefore, we would hardly wish to be without it in today’s programming

(see also P9.18), but this alone does not lead to *‘structured programming” or “software engineering”.

Comments of Chapter 3 A

“

Programs for Arithmetic Operations

An effective programming languaoe Iﬁust be applicable to the | programming of the arithmetic operations
down to the smallest detail“This cohviation of mine was a result of my experiences in the development’
with the aid of mathematical logic of circuit — diagrams for the computers Z1 to Z4.

1.1) Scalars

In special cases irrational numbers can, nevertheless, be represented accurately by a finite series of symbols.

Hereafter where [ use *“ computer V4 ” Imean “ computer Z4 ” . Originally , I numbered my models
V1 .... V4 ( Versuchsgerit = test model 1 — 4 ). In order to avoid confusion with the *“V — weapons ”
I choose the designations Z1 to Z4 after the war.

I1. General Introduction

The problem of the conversion of different representations of numbers is also a widely discussed subject
in modern programming languages ( e.g. in Algol 68). :;e

The creation for the “ overflow ” is advantageous for the precise analysis of the calculating process. In the
syntax and semantics of modem algorithmic languages, this problem is not specially dealt with, but-
usually regarded as part of the pragmatics of the language ( realized by a hardware — interrupt ). To me
the reduction of programs in a operation which I called “ melting ” seemed to be very advantageous for
the automation of programming, The program for a determinant of the order n for instance, the elements
of which are constantly zero in some positions, can be reduced form the program for the complete matrix
by melting, e.e. by omitting systematically all irrelevant operations, e.g. multiplications by zero.

Axiomatic Representation

Axiom systems for arithmetic operations only indirectly represent implicit solutions for numbers and
operations with them. Indeed, axioms could generally only be satisfied by computers with an infinite
number of digits. The PK , however, permits the design of programs, in which the number of positions
( digits ) n is a variable. With limes n-> o the axioms can be satisfied.

é
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P9.18 Extraction of the Square Root

I took special care with this operation. The computers Z1, Z3, Z4 were probably the only ones at that -
time, in which the square root operation was built directly into the hardware. This is possible in an ‘
especially elegant manner, if the binary system is used. The follo'wing development of the program !
P9.18 is omitted in the PK’s English version. In case of special interest please refer to the. German

version. ’s

P9.19 Extraction of the Cubic Root

#
I hadelaborated 2 method for this operation analogous to the extraction of the square root; but it
turned out to betoo complicated to be built into the hardware of one of my computer models. Today,
approximate mélhgd's are generally applied. :
- ot \. i

V. Operations with Positive Integer Decimal Numbers

’

V. 1) Structures of the numbers

e i

At that time I was aware of the direct binary code for the conversion of decimal digits only. Later I was ;
surprised at the very advantageneous §01utions of Stibitz and Aiken. - ;

. " T . ,‘“‘\ 3
V1. The Semi—Logarithmic Represenfation i
This representation corresponds to the * floating point representation ” of today. Originally 1 had inmind  ¢-

to construct computers with completely logarithmic representation. But this attempt failed because of the
very complicated solutions for the addition. Consequently, I developed the *“ semi — logarithmic repr_esentatior} ”
which only in the integer part of the logarithm was used. The digits of the logarithm behind the point are
replaced by a factor b,1 < b < B, ( B = base of the numbersystem ). In the modern floating point N
representation this factor lies mostly between 0.5 and 1.0 if the binary system is used.

14
The special values are only of limited practical importance. Since the model Z4 intentionally has no facilities -

for conditional instructions, I tried to incorporate as many of the variations as possible into the hardware. ;

In this I was considerably supported by the tools which my algebra had given to me. '

VI. 2) Operation with AAlL : : !

This section has been omitted in the English version of the PK. This example demonstrates that the PK is
able to scope with very complicated calculations.

Comments of Chapter 4

Operations with Algebraic Expressions

Lastly, at this point there was the op;;ortunity of dealing with normal numerical programs, e.g. solutions
of linear equation systems, matrices etc. But to me these problems did not seem to be very urgent then,
since it was obvious that numerical problems could be programmed with the PK without any difficulty.
Moreover, in the isolated village Hinterstein / Allgiu I was more concerned with other problems. I wanted
to investigate the then almost unexplored, more complex problems of calculating.
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. . i
One of these problems seemed to be the algebraic handling of formulas called “symbolic calculations™ today.
Right form the start of my endeavours I had been attracted by the target of generalizing the term ** calculating ” . i
beyond numerical problems. oy !
B
I soun realized that I had entered a very wide and complex field. It was implossibleto explore jt in a short 5‘
time to an extent which would suffice for practical use. As a consequence I concentrated on demonstratmg b
that the PK was qualified for performmg symbolic ca]culatlons ‘ »
In the following chapter only the rather simple propositional formulas are discussed and this only for b
some typical examples.” ' !
;
An extraction of this chapte: was published in Archiv der Mathemauk Band 1, Heft 6 ( 1948/49), Verlag ,
G. Braun GmbH Karlsruhlr . \
L 1) g) Development of Programs 2 :
To me this problem app'ésared to be of the greatest importance. Instead of the term * compiler ” I used the ¢ r
term * Rechenplanfertigung ”{ program production ) , I intended to reach this goal by means of "
symbolic calculations. In my imagination it should have been possible to establish the rules for a compiler. - ;
for the PK itself. Later the ma;hemat:éxans went other ways. The first programming languages such as Cobol, f
Algol, and Fortran were not suited for this purpose. Only some recently developed languages, e.g. Algol 68, :
contain some of the required facilities. p
As is well known, the development of compilers required tremendous investment in manpower, time and ) F
money. It would probably have been much more advantageneous to exploit the facilities of the PK form the
very start of programming. , E
*
I1. 1) Negation symbols have also to be regarded as operation symbol ( monadic operation ). Today it is a
comman practice to take the symbol —  to avoid ambiguities. r
11. 2) This is a recursive definition. The formal expression for Sa( x ) demonstrates, that no “ metalanguage ”?‘
is necessary in the PK. For such definitions the * Backus—Naur—notation > for example is often used. This ‘
again shows that the PK incorporafits a true calculus. . ; qt'
Page (175 ) The rules in terms of natural language are not precise enough in the sence of modern formal _ !
grammars, ’
Page (180 ) The value e represents the * Klammerbilanz * ( balance of brackets ). Later Rutishauser
introduced the term “ Klammergebirge ” ( bracket mountain range ) , for this.
Page (184 ) The order of * ranks” of the operation— symbols used here in contrast to the common habit
of utilizing the term * Bindungsstiirke " (priority of operations ).
In programs, the higher rank corresponds to the block or program of a higher level. This wa/ my ( 7/5/

reason to introduce the * order of ranks . Besides of that it is comman today, that the symbol A
has a higher priority than the symbol v
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Page (189 ) Remember that the errors in the ongmal mansucript have intenionally not been eliminated

in this publication. : ;
| Y

Today, we know that the simplification of formulas is one of the most difficult proble.n}s of §yrnbolic %
calculation.’ In most cases it is not possible to formulate an algorithm simple enough for pracrice:! In E
such operations the experience of a mathematician plays an important role. Today we use the terms ;‘
* Artificial Intelligence ” and “ General Problem ” Solving” for the definition of such problems. The ¢ &
progress in this field is relatively slow, 1
i

Yet, I am convlnoed that these efforts will have great success in the future in spite of some disappoint - f‘

ments. Perhaps it woukd be more effective to exploit first the facilities of the PK and thus obtain a
solid foundation. Moreover, the computer hardware so far has not been designed to handle such problems

conveniently. It should be worthwhile, therefore, to develop hardware which would be well adapted foy ;
the use of PK programs. i

S

’

Y

II. 4) Introduction of the “ Machme Mode ” (- Maschinenform )

.
LA 8 g

As already mentioned, I had i m mmtl to extend the PK beyond its original scope, with the-aim of compll }

ing programs in particular.” For this purpose the * machine mode  provides a good start, The later develoﬁ
ments of algorithmic languages went this way, too. _ :

b -3

But my relevant investigations began only spbradically and not systematically. Unfortunately, I had to
stop this interesting work for lack of time when other problems began to occupy me completely.

>

oy

Page (232 ) The form is analogous to the so called “Polish Notation”. But that was unknown to * .
me at the time. The form is not identical with the so called *Praefix—Notation”. t
- E
Page (198 ) Pay attention that the symbol I ( x ) is used hear in another sense than on page SO ‘
. i
Comments of Chapter 5 ‘ $

Chess Programs

The formulation of schematic thinking processes associated with chess has been a task which stimulated
from the very beginning of my investigations in general calculation about 1937. To scope with it, I
learned to play chess. However, I never became a good player and, indeed, that was not the aim of my l
engagement. ‘

I soon also realized, that the program for a good move is very difficult to design. First it was necessary
to create a foundation for further proceedings. Therefore, I was hardly ever occupied with a * Theory
of Games ” of the kind developed by John von Neumann. By the way, I had in mind a method, which
today is called ““ Minimax , to evaluate the best move. But I realized very soon, that this method was
of no practical importance, since even large electronic computers are not capable of performing the
necessary volume of operations.

In 1945 , when I developed the PK in the isolared Village in the Alps, I did not even have a che‘s'sboard
at my disposal. Moreover, I could not find anybody in the Village to play chess with me. !
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This situation may excuse some errors that I incurred, e.g. a false interpretation of the rule to strike

“ en passant . But in the context of the PK this did not matter. I believe that the chess - programs

alone prove the capability of the PK to handle very complex logical problems. !
- . i

When 1 heard of progress in this field later, 1 was surprised that this had been possible without the ule of

a universal algorithmic language of the kind of the PK. As far as I know, chess programs were not estabhshed

in one of the algorithmic languages than exsistant but directly in maschine code. I do imagine, that this i 1s a

rather complicated method and that a language like the PK could facilitate such programming most

effectively. Certamly, the PK cannot furnish the key for the defeat of the world chess champxon, like I

had dreamed of in- 1938 / b

Anyway, essential progress has been achieved recently However in the }‘{nal analysis we not only need ,

more powerful hardware,

S

\\

Undoubtedly, there are a lot of unportant goals to be aimed at other than that of playing chess with

*
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Chapter 1
Introduction

Note : The reader should have a general knowledge of the author ’ s
STATEMENTS OF A THEORY OF GENERAL CALCULATION ‘<) !

L The Problem - -

The Plankalkuel ’ s aim.is: the formal representation of any calculating program ( Algorithm ). These !
programs have to comply with the following conditions : }

1) Input - variables and results must be clearly specified.

2) All statements for intermediaie values and results must be given in explicit form so that the results cang
be calculated after the insertion of the input variables without additional tranformations that were not

" includefin the program. o
The programs can be of a g:e';\tvari:e\ty. In the PK “ calculate ” is defined as follows : f
-~ LA 4 R . ’

* To calculate new data form given data according to a program ™ . £

In this book the.whole field of calculating including * fixed programs ” is investigated . _ i

I1. Establishment of the PK ( Programming Calculus ) -
1) General Notations

appyre

Where numbers are used to distinguish between elements and to order them, they are written in
the decimal system. In this, a notation is preferred, which allows a simple transformation of the 4
numbers into the binary system, e.g. 0, 8, 16, 48, 64, 72, 128, ect. ( all powers of 2. ). '

Subdivisions are marked by periods, e.g. 1.3, 2.13.1, for the speciﬁcatiqn of cqmponéx_lfcs. .

In order to avoid the frequent repetition of the notation for a set of programs e.g. the chess - &
programs all sub - programs, data - structures etc. the symbol A is used as a substitute for the

set of programs. ‘P A. 13 for instanceis the notation for program 13 of the set of programs A. If
this special program is used outside of the ‘specific set , then the symbol A has to be replaced by
another notation. » !
Further, the relationless symbol [ is introduced for a blank position. In blank positions other !

suitable data my be inserted which are not necessarily related to other positions bearing the symbol
0. The O symbols may, however, be filled in by digits and numbers in order to interrelate them
within a program.

N

'2) Data and their Representation

The occuring data can be of varying types, for example Y—N - Values, numbers, lists , etc. The
term “ algebraic dimension ” was already introduced in the “STATEMENTS” . f f;: Jf-l’ A1 )
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The distinction between the different data is characterized as follows : ) g
a) Data Structures a‘ !
. : I
Data Structure is a structure made up by component data wherein their meaning is not considered.. 1
There arc data of fixed and of variable structure. Structure Symbol Si are attached to'each | ¢
notation. The formation of composed structures is then performed by means of * structure' '
equations ' , whereby already defined structures are used. ’ . ; »
. , ?
The symbol So is assigned to a single Y-N-Value. A sequence of Y-N-Values is given by the 3
notation ‘S{:n. The structure - equation reads : i'
. N - i -u s ':‘
M. - Sl.n. = nXSo .
b
In this way it is always possible to analyse the composition of data , even if the structures of ; v
data are very.complicated. - t
Y ’ ¥ t
Another structure symbol 1s required for * indeterminate . If, for instence we want to state, ;
without specifying the structure of the elements, that a notation represents a list of n elerﬁents,z
then nXo is its formal régresentatxon ;
0 then can be substltuted by any structure symbol. o i
OXo is the general structute notation for a list ( the length of the list and the structure ¢
of the elements are left open ). _ £
OX2¢ represents the structure of a “ list of pairs ™ wherein the structure of the elements is ’
not fixed but is the same for the two elements of a pair. %
OX ( o,r) represents the structure of a list of pairs with different structures for the nexghbounng
~ elements of a pair,
2XnXo¢ s not a list of pairs but a “ pair of lists . ‘ B
The notation N (,V ) specifies the number of elements N of alist V ( number of elements f
o 0
of the first level ) . ! t
: ' '
b) Limitation of Data . o g

Data Limitation is effective if the variability of a structure is not completely utilized for the
representation of data. E.g, four binary digits are required to represent a decimal digit, but in
this only ten of the sixteen possible variations of a series of four Y-N-Values are utilized. In

such cases a limitation formula defines which types of data have to be considered. This limitation l
is represented by a B with an index. !

If the Y-N-Values of a decimal digit are represented by 3, a1, 39, 33, the limitation formula

reads as follows :

a3V31V32

This propositional expression is only valid for the binary numbers 0 to LOOL.

Another limitation is the conversion of components into constants. It may often be convenient
to supplement the elements of a list by their numbers within the list. So we produce a list of the !
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indices of the components of a data structure. This list is independent of the variations of the elements

( see chess — programs page 217).

¢) Types of Data .

Notations of different meaning may be assigned to the same structures and limitations, e.g. the ¢
coordinates X and y. Generally , it is not necessary to distinguish between them. Should it be
advantageous, however, then the type — symbols T, , T, ... are introduced.

d) Modes of Data (.Angabe;g;t)

A structure arid p‘oss'{bly a limitation or type designation is designed to every mode of data. Independent‘ly

of that, the‘component.s' may have different meanings e.g. numbers in half — logarithmic notation.

i

All these notations can be combined by the mode — symbol Ai. If a notation is specified by a modes —

symbol e.g. A10%then a separate notation of the structure is not necessary, since that is contained in
the symbol A10. Mode - symbols can also be assigned to a group of different analogue structures.
Numbers for instance can be rei)resemed by different structures ( binary, decimal. etc. ). We are then
able to introduce a special-synihol e.g. A8, see chapter 3, page 148 , which only states, that the data —
mode refers to a number, withp'u't determination of its structure or type.

An indeterminate mode — symbol « can be now be introduced.

¢) Components of Data

The parts of which data are composed are called components. The composition is represented by the
structure notation : ' ' '

S1.3 = 3XSo

This means that the structures S1.3 is composed of three compohents of the structure So (Y ~N —
Value ). These components are designated by K, K{, K.

The components may themselves be composed. The integer for decimal numbers is represented by the
. equation '

nXS14 = nX4XSo

o K1+ Ky represent the single decimal digits. These are themselves composed as follows :

Koo -Ko.l Ko.2 Ko3
Ki.o Kl1.1  Kl1.2 K13

In this way the notation for the components can be subdivided to any level by the insertion of
periods. The sequence of the symbols in the structure notation is relevant. For example :

.

nX4XSo * 4XnXSo

The first notation represents a list of n elements in whgjh each element is composed of four Y —N —
Values. The second notation represents four series of n Y — N — Values.

¢
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In the first case Ko has the structure Sl.4, and in the second case Sl.n.

!

In the foregomg examples the components were homogenuous. But this is not negessary. A sign
may be attached to decimal numbers for instance. The structure is represented by the expregsnon J

( So,nXS1.4)

Now K, is of the structure So, and K of the structure nX1.4." It is not possible to subdmde
K, into components, but it is possible with K.

Note th‘at,? ir\x'g, notation composed of n components, the highest index is n-1 since the numbe-*

ring of the componénts starty with zero. ‘ }

f) Representation of Data . k !
~The mdetermmate representatlon of data is accomphshed by letters with an added mdex, e.g. A
Vl , Z3 , etc. The composition of several data is mdxcated by bracketing and by setting com'mas %
between them.  °, . ‘ 2
ST '..,““}'- (a,bb) = ¢ 3

In notations of this kind, the component with the lower index is always written first. Also when E

numbers are represented digit by digit in indeterminate form, the symbols for the lower powers 1
. are written first. -

The determinate representation of Y-N-Values is normally achieved by the symbols “—” and ;
“+” _ For numbers digits can be used, ( e.g. the decimal digits 0 to 9 or the binary digits «
0 and L). For this purpose, data have to be decomposed according to their structure definition.
When numbers are represented by the symbols “~” and “ + * the components with the 4
lower index are again written first. However, when numbers are represented by digits, the digits

with the highest index are written first, as is usual practice. Consequently, the following represen f

tations correspond to each other : H
LLO = —++ : ¢
- LOLO = ——+

83 = L000,00LL= (++ ——, ——+)

This requires careful observation.

For the indeterminate form of an Y-N-Value the symbol “ o ” is introduced, but only in context ‘

with “=" and “+”. a = + — o for instance, means, that Ko (a) is positive, Kl (a) 1s i !
negative , and that K2 (a) may have any of the two values — or +.

The condition that a binary number x with four digits is even is then represented as follows :
X = — 000

Only the component K (x ) is determinate here.

The symbol “0” can generally be taken as a substitute for a series of symbols *“ — ” , even -
if this does not represent a number.
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g) Representation in Lines

Seperate lines are used to characterize clearly the various notations which belong to the data, as
for instance variable - index, component, structure etc. ' T -

‘
A

First comes the main line for the representation of the expression in the usual form.
The next line serves to distinguish between the different variables by means of indices (V) .

SN
Another line Serves to specify the components K of the variables.

The expression K1 ( V3 ) ( component 1 of variable 3 ), is written als follows :

) /

v
.. 3 : A
) ‘.‘ .‘ 1 . - o
or K23 (2, ) =7, ,"“:\_
: 4
23

The last line serves for the specification of the structure, type, or mode of the data (S =
index, or A= index).
Example :

Z  variable Z,

4

2.3 component 2.3.

0  structure 0.

-

P DR P SR o B

& ey 3 Swm

e

The structure - symbol refers to the component. The single lines are marked by preceding letters, E

V,K,S.__or A:
Z A Z
Vi4 2
K{23
S0 0

If a component is not derived from a variable, then the component index position is ‘blank.

The preceding letter S can always be substituted by A ;inverse substitution is not permitted.
In such a case , the indices already used for structures may not be used for modes as well. The
structure - symbols So, Sl.n for instance are identical with the symbols Ao, Al.n.

_With line representation it is easily possible to distinghuish between the different modes and
types of data. With it, it is not necessary to use different types of letters for different types -

of data, as is usually done, such as gothic letters for vectors. Such.practice would not be appli -
cable in the Plankalkuel, because of the large number of different data - types to be handled by
it.
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h) Co Constants

i
‘Constants with a special.meaning can be assigned to the various types and structures. A constant
isa spec1a1 value of the set of possible variations of a variable of a given mode or structure s {
They are marked by a C with an index. The index normally refers to the structure or type

i) Supplementat‘ion of Data by Numbering of Components

Any composed notation can be supplemented by a constant which is represented by a list of
indices -of the components. These values are specified by I( ). (Index of ...."). ;
. Y - - ’

- This is important, in order to learn where in a list an element with a special property is situated.

~(E.g. in chess problems : * The square occupied by the white king ” ) This problem can be
solved by the '§upplementation of the notation by a list of the indices. But in practice it is not
always necessary to perform this operation, since the symbol I ( ) is well defined.

— S

¥

. . © . ¥

j) Data of Fixed and Variable:Structure :
The whole set of dll possibl‘é\ variations of a given mode, characterized by structure, type of ;
limitation , forms the set of possible values , If the structure is fixed , then all elements of this  :
set are of the same structure. If the structure of the data is variable, then the elements may g
have different structures. Thls is, the case w1th hsts of varying length ( e.g. in chess problems : -

List of the acting pieces ) .

Mostly, the variability of the structure is confined by the number of its components. Then the

e

structure —symbol is not a simple constant but is itself a variable. These variables are relevant in .
variable programs. The variable is then composed of the “proper variable” and the “ structure - ¥
variable . The structure - symbol here influences the course of the computation.

" 3) Fixed Programs . - ‘ i

5

‘a) Notation of Programs !

The programs are indentified by the letter P and an index ( e.g. P1.10) .

Mostly, the index is composed, wherein the first component indentifies the programs group.

Programs may be of any size and may produce many results. » l
b) Variables of Programs ' !
a) Input Values
These are identified by a V with an index.
f) Intermediate Values »
These are of relvance only within the programs. They are identified by a Z with an index.
v) Constants

Constants are part of the program. They are identified by a C.and an index. One has to
distinguish between general constants and special constants. The special constants are inden N
tified by the characters Cp and an index. They are valid only for the specific programs. B
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8) Results . k
Results are values which are calculated as functions of the input — values by means a program. | i :
. ’ =
They are identified by a R and an index. . f
‘ ' ' = bog
The identifiers V, Z, Cp, R are specifying variables and located in the second line ( V = line ). ! : W
¢) Range of Indices ?
The range of the indices of the variables is confined to the specific program for which they are ;'

defined. The vaiqc 2; , of program one, therefore, is not identical with the value Z3 of program S 1 AR
two. If results of a ‘program are used in another program they then have to be identified by the ;

index of the source — program. Rl 10 () for instance specifies the result with the index’ o of
the program P1. 10

L d
o

W e

S

“ 4
The numbering of the .V — and R — values has to start form zero. ‘The ranges of the indicgs of the
program (Pi), and also the structure —, type —, and mode — symbols are valid within specific

programs as well as outsxde the*m
« ) \

.

d) Marginal Data Extract

» Sem MEEWS akE P P

Marginal Data Extracts of a program represent the input and output values. Their structures and
types are specified by marginal data extracts. On the left side of a marginal data extractan ’
expression R (V.. V),islocated which Lists all input values and on the right side is located

a list of the resul(t)s : "

e

L ]
R(V. ,Vv)y=(R , R)
A" o 1 o 1 g
S I.n In’ ln o
This data extract means: The program has two jnput values V, and V; of the structures Sl.n ! t
and tworesults R, and R; ofthestructure Sl.n and So respectively. H !
0 . Marginal Data extracts may be established for several programs in common. They are not part -

of the program, but only coordinated to it.

e) Program Equations and the Symbol “ResultsIn” : !
A Program consist of a number of specific explicit program equations. On the left side an expression l A
with input values or already defined intermediate values is located, on the right side an intermediate

value or a result. It is also possible to calculate the various components of a result separately. The

two sides of the equation are separated by the symbol *="". This symbol may become identical
with the symbol “=" (equal ) or the symbol “~ " (equivalence of propositions ). . For this

we have the following rules =

a) Always the value on the right side of the symbol “= " is the one to be calculated. It
never itself represents an operation.
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. B) If the symbols “=" or “ * ™ appear within a program equation, then they represent
operations
V =V=7 | | "y
o 1 3

S 1n In" o

specnﬁes that Z; becomes positive if V equals V.
7) If. the’ same-values appear on both sides, then the values are not 1dennﬁ

\‘\ -

Z+1=7
3 3

specifieg, that the old value Z3 increased by 1 results in the new value Zj.

Such an equation can-be replaced by a more precise equation as follows :

L
Z+-1, ,":’\Z
3 3iH

Here the values on the two sides are distinguished by subindices.

§) If the same value occurs in several equations repeatedly on the right side, then the last
calculation of this value is good. Preceding values become invalid.

The items v ) and 8 ) correspond to the method of usmg storage cells repeatedly which the
author already realized in his Computer V, .

The rule implies, that the sequence of prograxh - equatit;ns may not be changed.

Concerning the use of brackets, the symbol “ = has the widest range ( an exception is the

symbol “ = *, to which reference is made later ) . Two program - equations standing side by
side are separated by a vertical line.

f) Subprograms

Programs may be composed of subprograihs, and these again.may be composed of other sub -
programs . In this way programs and subprograms can be nested manifoldly.

In principle, any program can be used as a subprogram. To define this, the results of the program
which is to be used as subprogram are shown followed by brackets. Between these the variables
Vo , Vl , of the subprogram are substituted by those which are to be inserted into the sub -

program within the frame of a main program. Thus we produce, an expression such as the
following : :

RO.INZ) =» 2
Vio 0 i
SI 1n°  latl

-

-

-
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:
"

 which states that the result R of the program P9.10 calculated with the finputtvalue Z, Sy &
results in Zl . !
, =
_ 3
The term R9.10 ( ) is used as a function symbol with one blank position. The nuniber of ;

) :
blanks is equal to the number of blanks in the corresponding program ( in this instance P9.10) .

af 2ol g

»
. P
It is obvious that the structures of the variables must coincide with those of the program . In the :
example merition_ed above the data extract reads : B
."\'-.\ R( \Y% ):( R» K R ) s ':
*Vi .o . o 1 i
S ln  Ln+l o
_ »
If the result .R9.10 ( Z ) is also of interest, the two program equatlons can be combined as !
follows :  * A 1

RO.IOCZ) =( Z ,Z.) R
vi L0 1 2 ’
S “'kA Lo+l o :

In this way any program can be used as a subprogram. The symbols for operations and functions
also in some way represent subprograms.

.
s fwm

If special programs are to be used as subprograms within a single main program only, then the
following possibilities exist

e,

a) The subprogram is established as a normal program, the only difference being that the
‘ symbols “ P and ‘R ” are replaced by “PZ” and “RZ ™ (analog to the r
intermediate values “Z ). Indices O, 1, 2 ... are attached to the symbols * PZ
and “ RZ ” to distinguish between different subprograms within a main program. The °
range of these indices is limited by the main program. Consequently, the program PZ] "
of one main program is not identical with the subprogram PZ1 of another main program. }

B) The subprogram is established as part of the main program. The notation of the variables
of the main program are also valid within the subprogram. Accordingly, it is not necessary
to change the notations.

v

Such programs are marked with a U and an index. They refer to a main program.

Operation symbols can be used in the usual way instead of the program symbols “P .. or !
their result symbols “ R .... ” . This is convenient for the handling of programs of general impor -
tance, e.g. propositional operanons, or arithmetic operations.

g) Operation Symbols, Function - Symbols

"Corresponding to the predicate calculus the results of programs can also be identified by a series
of characters, for example :

Pos(x) meaning “x is positive ”
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N

g

h) Remark ’ %
The programs discussed in section 3) are all fixed which means that the sequence of the opera - ! ;
tions is independent of the variation of the input values. - e aa i )

s e
", 4) Quasi fixed Programs :
[

2) Definition :
Programs are termed quasifixed, if they allow some variations independent of the real variables. This;“:
means; Ihat\the variation of a program can be performed independently of the real calculation. , 4
The vanatxon of the _program results in a fixed program. Because of their properties such programs
are called quasi-fixed. y ‘

x

¥
The vananon of the programs is a function of the * program variables ™ which consist of t
~ variable operatlon symbols, program symbols, stmcture symbols, etc. These * program - variables b
in relation to the real variables represent another level of variation. Level 1 "can be varied in - %
dependently of level 2, bunlevel 2 depends on level 1, It is possible to distinguish between the ¥
following cases : -~ ~ .~ .. ™ L 3

b) Variable Operation Symbols ‘

If several programs of the same structure exist, such as : F
VaV=R ;
o 1 1
«
VvV=R
o 1 o ' ¢
o 1 o ’

% 29

then it is possible to introduce a common variable operation symbol “ 6 ;

v b
V6 V=R ‘ R

- Vio 1 o
Slo o o

The symbol “ & ™ may be substituted by any symbol_for dyadic operations with Y — N — Values,
which represents propositional operations like A, V,~ - . :

In this example the number of the operation symbols allowed results form the notation for the !
structure So of the variables X and V.
. 1
If this number is to be limited to the operations for which the associative rule is good, then
the best procedure is to list the operation - symbols allowed.

The data extract of such programs must also contain the operation - symbol as a variable.

R(8V,V) =R | .
\' ol 0
S oo 0
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In order to specify the different levels of variation more brackets are used
. | !
(R(6)) (VV) =R ..
\ o1 o Tt
‘4

S oo o
It is now clear that the pertaining program is pnmarely a function of & , the result of which
dependson 'V and V.

0 1 _

In the abové memxoned example no structure - symbol is assigned to the variable operation - 1
symbol.- The structure of operation symbols is normally S1.n. In complicated cases special de -

finitions for the structures of operation - symbois have to be introduced. If there is more than
one variable operation symbols are introduced to distinguish between them :

. .
" 4

6, 8,06
0 1.. i

-

' . a. L A i
These indices are inserted into the second line.

AW e TS TR T

¢) Variable Program Symbols

Variable subprograms in the same way as operation symbols can be established. A variable prografn -
symbol *“I” is introduced. v ;

d) Variable Negation Symbol

Frequently, programs differ only in that Y-N-Values appear negated or not negated. The two
propositional operations, equivalence and disvalence, for instance can be expressed by the opera 'F
tions, conjunction and disjunction , as follows :

(VAV)v(VaAV)= R ¥
o 1 o 1 o '
(VAV)v(VaAaV)= R }
o 1 o 1 )

These two programs can be combined by the introduction of a variable u of a higher level :

((VA(u ~V ) v ((VA(u~V))=R |
v o 1 -0 : 1 o [
S o 0 o 0 o

If u is substituted by “+ ” we then get the first formula if n is substituted by “~” then
the second. The data extract for this program is :

(R(u)) (V, V) =R
v o 1 0
S 0 o 0 o

In this case the structure of u can be indentified by So.

R e A LT AP
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A variable symbol V with index could be used instead of u . However, by taking u we
make apparent that the variable is one of a higher level, H

e) Variable Structure Symbols

In the * Statements ... ’'an example demonstrated that programs can assume different meanings
by varying the algebraic dimension. - , !

Determinant -representation can be used advantageously for real numbers as well as for propositions.

The two, p;dgrams differ only with respect to structure symbols and operation symbols. The 4
two variations Have the following form : }

) Determinant of degree 2

for real numbers : A= 1V V¥V t
“ [s) ’l ¥
vV Vv %
R 2 3 S
R(V; V, V; V)= R :
v o 1 2°'3 o :
A 8 8 8 8 8 g
VXXV~-V X V=R
Vi]o 3 1 2 o %
Al S8 8 8 8 8 .
The symbol A8 stands for * real number ”
t
f) Determinant of degree 2 for propositions : ’
R(V,V,V,V) =R
A4 ol 23 o
- S 0000 o : t
“ : Vv VAV, V2R
Vio 3 i 2 o
S o o o o o

These two programs can be combined by the introduction of two operat:on symbols !
“% ” and “d ” and a variable mode - symbol “a”

o 1 ’ _ !
f R(a6d) (VVVV)=R

v 12 o123 o

A aao o

Table of variations :

a é 6 .

0 1 {
So v A
A8 X -

e A e g w e R e

SR ed B G it

>y »

B Yy

Mm4

D
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(V6V)Ss(VsV) =R
v oo 3 1 102 o ,
S o a e o« o ot

f) Variation of the Number of Components of a Structure

Frequently, only the number of the components of the input values are varied. The prograrhs
then differ by a different number of repetitions of analog program parts.

The elementary ‘case.is that of a structure Sl.n or of a list nxo . The representation of the
programs requires the assistance of repetitive programs. ( This is reffered to later ). -

g) General Considerations about Variations of Programs

.In the examples mentioned before, the variation of programs is effected by the insertion of -

variable symbols. Much more complicated variations are possible however . _ .

\
]
N

NN
For instance, in program £9.18 ( extraction of a square root, referred to later ) the number of

positions of the result has to be evaluated before the program for the square root itself is cal - -

culated. : -

This type of program leads to the variable programs; Fixed and variable programs differ in that ,
variable programs use program varfijbles as well as real variables.

5) Variable Programs

In variable programs the input variables influence the course of the calculation.

First, the program variables which were discussed in the paragraph covering the quasi fixed programs,§

such as variable operation - symbols, structure symbols, etc. can be functions of the real variables.
It is possible that the type of an operation in a program - equation is only calculated during the
course of a program. Such cases are analog to those in section 4 ) .

In addition , it is possible to distinguish between the following typical cases :

a) Variable End Symbol

e

~

There are programs, which can be terminated before being completely computed if the result
is already clear after part of the program is executed, or , if a continuation of the compu -
tation appears to be irrelevant . For instance, a disjunction with several components can be
terminated as soon as one proposition turns positive and a conjunction as soon as one proposi -
tion turns negative .

To indentify “ end > the variable end - symbol Fin is introduced. It is put on the right side of
a program equation. The expression to the left of the symbol = represents the criterion , that
the computation may be terminated. '

Ay ARE B O P — TP Ll
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ERPEP O

For instance : a 7
VvVuvV=R Y
o 1 2 o e
V=2 |2Z=Fin | Py
o] (o] 0 ) x
ZvV=>Z I Z = Fin l, 5
.A\"o-_ 1 ‘ }
uZwv"V = R i ;‘
4

(M) 2 o

—

This kind of ;:epresentation is advantageous only.if repetitive programs are applied, or, if the
propositions are represen‘ted by complicated expressions.

ST
-

e

Lt 83

Generally, the range of the‘ symbol Fin covers the whole of the program within which it appears 3
If, however, it is m)f ndéd to skip over only part of the program , then several program equatxox?s /'t &
must be combined to form a part program which is marked by brackets, The range of the symbog
FINis then limited by the brackets. g

Such program parts can be nested. The symbols I-"’in1 Fin2 then determine the range to be E
limited by the first or by the subsequent enclosing brackets. This is especialy important when *?

using repetitive programs. .

Correspondingly, an expression following the symbol < is also considered as a part program thhr
a fixed range ( see section 5) b)) .. ,

b) Conditional Program Parts ¥

The computation of program parts can depend on conditions represented by an expression whicht
depends on the variables. The condition and the conditional program part are separated by the

0 symbol > . The dot indicates that this symbol does not identify a propositional operation ( impli -
cation ) .

Mm

A simple example is the computation of Maj ( X, Y )(the larger of two values X and \l/ ). I A’/

Maj (V, V) =R !
A" o 1 o}
K 8 8 8

V2Va( V=>R)_
o 1 o (o]

V2V (V=R)
o 1 1 0 ' {

In this case either the first or the second program part is computed. Such conditional progréms_
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»

skl Y af”

Ry

may be multiply nested. : !

The indices of the symbSls “V»,eZ” ,“R”,”K?”, etc. can be made to depend on
- variables. For instance, in the expression

\"

VI|o
e K >x'/~
S | tn-

.

R R T 2 SR B D R AT
.

-

the index of the component is variable, Now these variables can themselves be composed or
supplemented*by indices. The variables are wirtten on the main line and connected to their

— -
-

correct position by ‘a broken line : :
- . T . . “
TNV 2 S
- vto I 1 §
K §
Al 1 )
£

In t}ns expression Z; indicates the component index of V. The structure notation for. V
then refers to its component the structure notation of Z; refcrs toZ;.

A typical application is the following : A function is represented by a list, in which every variable’
refers to a function value. This results in a list of pairs ( pair list ). If the variables are represented’
by the integers 0 to n-—1, then they correspond to the indices of the list and then only the '
list of the function values is needed for the representation of the function values. If the structure

~ on this list is specified by nxo and if -Vl is the variable, then the corresponding function E
value isrepresented by :

b
V ~V
v O‘J' 1
K
S o 1n.
( see also : chess problems PA.62) _ l

Not always does the overall index have to be varied. If, as described in the example above, the !
function values are composite and only the component 1 of it is.wanted, then it is possxble to
define and intermediate value Z, first as follows :

V ~V=2>Z | Z=>R
0[1 o o o
1

7. 1n 1.l 7T T

PR <
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The two expressions can now be combined as follows : -

V V.l =R . '
v JI o .
< | v A
S T I.n T .

The term  V.1is th,{éughtto be inserted into the position of the component index of V. The
1 0
dot identif{es_th:é different levels of the components.

»
AV o . i

In the list 'V the element with the index V shall be substituted by the element V :

o 1 2
R(*V ,V, V) =R
\Y "ol 2 o
S - nXg,'l.n 9 nXo : : -
\k.‘.,"':\
V=2 |V=>Z"~-V |Z =R
Vio 0 2 Jl o o
K
S nXe nXolo g ln | nXo nXo

The computation of R is performed via an intermediate value Z, which varies during the
course of the computation ( ref. rules for the symbol =). Note that only the component V; of
Z , varies ( for an example, see chess — problems PA.136).

The variation of the index can also be performed several times in succession ( see chess — problems
PA.202). . '

The demonstrated variation of the component index may also be performed with the variable —
index. The two cases are analogical. The variation of the structure — index represents the case
already discussed in section 4) e, f, that the structure — symbols depend on the real variations.
This may refer to the basic method according to section 4) f (see arithmetic programs P9.72).

d) Data of Variable Size

Data of variable size are important for the list — calculus ( see chapter 2, general programs ) .

If list extract R has to be produced from the list V; which contains only those components
of V, , which with a certain criterion comply, then the size of the list R is a function of V
itself and not only of the size of Vj (in the latter case you have a quasi fixed program ).

In such programs the structures are functions of the real input — variables and have to be determined

for each computation ( contrary to the quasi fixed programs, where this is determined independently
of the real variables and only as a function of their structure ).

It is not necessary, however, that the size of a list is always specified by the structure notation nXo.
.Other size specifications are also possible. Two of these are of special importance :

—

-

-
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) The specification of lists by additional data. A part list such as V can be produced from a long list -

ticking additional data. In this case the ticked components only ffom the part list.
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B) The setting of “ begin ” — and “end ” — symbols provides a means of identifying the
length of the list. These symbols may be blank positions. It has to be noted that in machine 1
coding a special symbol has to be assigned to a blank position. In typew)vriters*a special key
is usually assigned to blanks. =~ - Tt Lo
Different programs solving the same problem may be represented differently depending on  «
the kind of representation. By using various provisions such as repetitive programs and the
u functlon ( reference to it will be made later ) 1t is possible to avoid the differences ana
es’sennally to standardize the programs. . \

e) Compufation of Prdgrams T _ ' '

can be separgtely established as a function of the programmvariables oq% has already been

discussed. {see4-)x ( See da Fd/ai/ 5”1’)

That the real variables of a program are of different levels, so that the variation of the program t

In general however, tlus procedure can alsa depend on real variables.

If uy,up.uy are the' prbgram variables of a quasi fixed program, and represent variable
operation - symbols or structuresymbols and others, then the expression for the computation
of a quasi fixed program is the following : ’

F ( uo, ul, UZ) = P

haiaas o

P is composed of a series of program equations in which the real results are defined as functions

of the real variables Vg,V .... The whole program then is represented as follows : ‘
"F(uwyuyu . )=P - t

o1l2 '

P \ b

“This states that the compiled program is computed after the computation of the program is com- '
pleted. Here also, only parts of P or only program - variables may be defined by the expression

F ().
The program for \2/ X takes the following form ( see programs for arithmetic operations )
Marginal daia Extract . ‘ i

R(V )=R
\%
S

1.n 1.m

Marginal data extract with program - variables

R(nV)=(mR )
v o (o} '
S ln lm’

B A
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"
P : !
rogram : .
F ( n ) = m - a . ) ‘
(R(mn)) (V)=R | "
First m is evaluated as a function of n, then 2/ V may be evaluated by a quasi fixed - ‘.
program. °
6) Repetitive Progra::h's; . - i

Repetitive Programs are programs which are executed several times in succession, wherein the number

of repetitions in.special cases may also be zero or one only. Ger{é}ally, a program equation or a g '

serics of them is‘solved, as soon as the listed instructions are executed. The non - formulated rule

exists wherein you proceed to the next equation after execution of the current one. Conse -
quently, the sequence of the equatlons on paper must correspond to the programmed sequence of
_ their solution. - ‘n‘ ‘ ~

The rule for repetitive progra:'ns is that the start of the program is retugx/gd to until the signal
*“ Fin ” terminates the repetitions.

3 e

This is only meaningful, if the instructions of the repetitive program are subject to variations
which result form the repetitive computations themselves. Very often these variations serve to
process a list for the computations. Normally, this is accomplished by changing a component - index *
i to itl. Repetitive programs, therefore, generally operate with control variables i, € , which

control the variations of the repretitive executions of a program. They are called * variation - F
values ” of a repretitive program. F

The repetmve program must contain-an instruction for the termination of the program execution d
as well as the instruction for the variations. This may , have to happen either after a predetermmed H
number of repetitions is completed or as soon as a set of values is worked off. To terminate the
symbol Fin, but of the second degree Fin2 , has to be used. This is necessary since the entire
computation consists of a sequence of equal repetitions of the program. The single symbol

Fin within a repetitive program would only cause the termination of the variation currently running
without returning to the start of the repetitive program.

appryren

Repetitive programs are put in brackets and marked by a pre-set symbol W.
Such a W- program then takes the following general form : ‘ !

w [F-.»P ]
F - Fin2

F represents a propositional expression which is a function of the variation — values and of the
variables of the program as well .

P is the real repetitive program. It contains the program including the instruction for its variation.

If “F” is positive then P is executed , if *“F ” is negative then the whole process of repeti -
tions is terminated. For simplification, the expression F = Fin? -is left out and it is understood -
that it must always be regarded. as a complement to a W - program. A W- program then takes the
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¥
‘ !
form : e e ‘
W[ F>P] %
This can also be composed of several expresiions : y
w '"Fo > Po‘
». \-. . : .
SR TR '
' " ' ]
4

-
. .
~

P

. . .
L P, o

In such cases , the end'éymbt}'\l must be supplemented by an expression : f
. coy . 3

Fo A~ F; ..AF, = Fin? £

which indicates, that the process is terminated if the condition for its execution is positive for §
none of the program parts. Besides this general - W - instruction, some other special ones are ’
introduced for frequently recurring cases. A ;

First a program is investigated in which a control variable i or e runs through a series of numbers
Wo(n) denotes n - repetitions of a numbers.

For instance : Raising to a power : : d
v o
1

Vo : RO P P . - - PRe—_—, . ’
R(V,V) =R . A8 = real number t
A ol o o : :
A 89 8 . A = pos. integer number
- |
1 =2 l.Wo ) [zxvaz] Z=R - !

o 1 o o olJlo o
If Y = o then the W - program is not executed. The result Ryis L : !

If \l/ = 1 then the program is executed once. The result R, is X, etc.

W1 (n). This instruction is used, if the program varies in value form o to n-1, e.g. if an
‘operation has to be performed with each component of a list.

RET

S s e g e
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Example : General negation ( see chapter 2 ).
Negation of all clements in a series of Y - N'- Values

R(V )
\Y o
S 1n’

V ‘-‘ TN\ .
K : ) \.‘~;
S

Wo (n)[P]
W1 (n)[P(i)}].
W2 (n)[P(i)]

{

W3 (nm) [P(i)]-

(n<m)

Wa (nm) [P(i)]
(n=2m)

Ws (am) [P(i)]

Wi(n) [ V=R
g o o

i

o]

n—-1 to o.

This W—program is important for instance for operation with algebraic expressions which are re -

= R
0.
ln

ot~

o=2>e | W]

o =i

n—1 =i

LA

Jn=r=i 1 Wi
R LW

Wi

—

<n=>[P | e +

1=¢1]"
<n=[P@) ti+1=i]]
>o+[P(i) 1 i-1=i11 .
<m2[P(i) 1i+1U=i1]]
>mw»[P(i) |i—-1=i]]

# m 2|

P (i)

m>n»>(i+t1=1i)

M<no(i-1=i)

W2 (n) corresponds to W1 (n) but with the difference that the control variable i runs from

'
H

presented by a series of symbols. With these reverse programs execution frequently has to be applied.

The limits of the control variables in W1 and W2 are selcted in such a way that the number of
elements of composed data ( list ) can be substituted for “

to n-1.

n ” . Then the variation runs from 0O

If, for instahce general negation has to be evaluated using data of variable structure , then the
formula may be written as follows :

W1 (N (v))

o

v
0
i

o
i

W3 (n,m ). to W5 ( n,m ) are programs in which the variation runs from n inclusive to m

exclusive and always begins with n . The limits are m2n for W3, m < n for W4, W5 is

applicable in both cases.

W—programs can also be used to from a seris of values. The series of the number 0 to n-1 is the
result of the following program :

arewt e
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0=*R| Wi(n) [R+1=R - -
\Y 0 o o *
K (o) i it1

W—programs can be multiply nested. The correlation of the symbols W and the program —
variables- has, thcn to be indicated by indices. For instance P3.3 : the examination of a list for
recurring elements

~e

Each element has to be compared with every other element.

-]l R(v) =R
v o 0
S n o
. + »\Z. \.\ "~
-~ ‘0... ,‘\‘\.

Wl(n). W3 (i+1,n)

s v i +#v i AnZ=>2
Vio 1 o O‘J-O Jl o o]
K
S ,

Z =R
o o

The intermediate value Z is used for the current development of the conjunction of all single
conditions.

The first W—program takes the form

Wi(n)
0 .
The index 1 on the main line specifies the kind of W-—program. The index O on the V-line

refers to the attached control variable written io . The first W—program runs form 0 to n-1;
" consequently through all components of X .

The second W—program is of the W2 kind with i indices attached, but it runs from ~ 1 +1 ton-1,
From this follows, that the lower limit is a function of the variable i  of the first W—program
In each run, one component of V is compared with all other compoonents following it, thus dupli-
cate operations and comparisons of elements with themselves are avoided.

Taking such numberings of W-—programs and their coxrespondmg indices into occount the general

instruction for W1 reads as follows :
W[i <n ?[P(i) i = xﬂ
j j j j

l Wi(n) [P(i)] =lo =i
Vii i i

T OOMI o PR ASe R R B

-
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Corresponding notations can be established with other W--programs,

W6 (nym) An especially advantageous form of a W—program is the folldwing:
The first clement is to be selected out of a list Z, . Then Z, is to be newly formed after the ‘.

selected element has been left out. Thus the list Z, -is being limited through other operations or

supplemented or newly established entirely.
We write :

|'We [ Z=Z|P(Z)|R(Zp ) =2
Ve 0 1 1 -0 0
.K - 0 ~e
This is realized by the following program ( “ & " see ).
WIN(Z) #0>[2=Z |8 (x€ZnAI(x)
vioo© oo 0 1 0
K y . 0
S P(2) | R(Zp) 2
1 ' o 0

The W—program consists of three parts:

a) Computation of % and its removal form Z

b) Program to be computed with % .

o

c) New formation of the list Z as a function of the former Z and other variables.
o o

-

£+ Q=2

0

The program is repeated until the list Z is used up ( for example see chapter 2, P3.9) .
0 .

7) Programs for the Predicate Calculus

In mathematical logic certain operation symbols play an important role : The ““ All ” —

and

“ Existence > operators , as well as the operators “ that one which ”, * those which ”, “ the

next” .

Now will be demonstrated, how these operators can be represented in the Plankalkuel and what

importance they deserve.

a) The *“ All ” — and * Existence — Operators ™

The expression ( x ) R ( x ) specifies that the predicate R is valid for all x. “ All x ”
identifies the number of elements, the insertion of which into the predicate R is meaning-

ful. This definition can also be adapted to the Plankalkuel. The number of values to be subs -
tituted for x is then the number of data characterized by the structure or mode symbols of x.

In the expression

| (x)R(x)
v

S l1.n 1.n

all data with the structure 1.n can be inserted for x.

.
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In the expression :

, (x).AR(x) o N RMW‘L“

Al ot A4 o AL C

only the posftive integer decimal numbers can be inserted for x ( seeX) A 1}9 v

Generally, thQ fojlowing rule has to be assumed : in the case of a restriction — formula B

( see! 46 ) , only the values defined by this formula can be inserted . This restnctxon is already

cotained in the term A9.10 ( see 148).

To establish the “ All ™ operator , a first expression is required to specify that x belongs to a

certain data — type
A (x) ‘ respectively A(x) =

»~ \

Herei.n. 13 a ” and “® O 2

L (a), then L (0) respectively .

If o= So then the list L (o) consists of values “ — ” and “+”. If ¢ = 1.n the
series of integer binary numbers from 0 to n-1 results. The program for the formation of

are random mode — symbols or structure — symbols. An expression
is then required to denote 'the list of all values which satisfy the modes a or structure o':

1

ST -y
' ~

Y aF S T P

*
3 rem

pr

this list has already been established ( see page 65) . In a similar way it is possible to establish
the program for the evaluation of a randomly composed structure o for the list L (o).

A restriction — formula can be applied to achieve a corresponding restriction of the list.-

In principle, it is possible to establish a general program for the formation of the list L (o) b

for any mode of data .

This will not be realized presently, for two reasons :

@) This program would be a function of the structure— notation of a structure notation, and
thus a variable of third degree, so to speak ( see 61 ), This would render the problem

very complicated.
B) Generally, it is not necessary to develop a list of all possible cases.

If the list L (@) is exceptionally required for a certain a , then the special program for the

development of L ( a) has to be established. Thus , in gen_eral, the expression

(x)Ro(x)=R | 2)
can be represented by the program :

A P T e

b ey e e A
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et
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L(A(x)=>1Z += Z | Wl (N ( Z‘)‘) RD(Z)AZ=> Y/ Z=°'IYR
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The same cosiderations are valid for the “Existence” operator

- T et ey ¢

(Ex)Ro(x)=R \
at least one element with the property RO exists. The corresponding program is the ..
following: : _ % {

L(A(x))= Z |—-=Z | WI(N(2Z)) Ro(Z) A Z=2Z27|Z=R ,
\% ‘ o 1 o e 1 1 1 ]
K | ] ' i
S <. \'a oXo o o ¢ o oJdio o

Now, ini practice, it is not nécessary to extend the variation of X over the whole range of the }
structure. Mostly the expressions are of the form, ** All elements of the list V, are of the
property RQ ”, or, “in the list V, an element of the property Ro exists™.

\.\ ! .

We formulate these sentences differently :

*
v.

“For all x is true™, If x\ is an element of V,, then it is also of the property Ro”, or ;
“An x exists for which is,true : It is an element of the list Vo and it is of the property V.3
Symbolic notation is now required to express that x is an element of the list V. In relation
to the theory of sets it is stated : ' :
: f
xe€ V .
\' o s
S| ¢ oXo - '
which is read : “x is an element of V”. » : : e
0
- 14
The symbol “€” binds expressions more closely together than any other symbol does. ,
The corresponding program reads : F
: R(V, V) =R R=VevV 3) '
v 0 1 0 0 0 1 o §
S P axG” 0
—-—=7Z Wi(n) V=VvZ=2Z21]|Z=R
\' 0 1 0 0 04j]l0 .0
K i
S 0 ¢ o 0 0Jl0o O !
The expression for the operators can now be expressed as follows : :

(x)(XxEV > Ra(x))
0

Ex)(xe V A Ra(x))
0.

In these expressions it is no longer necessary to extend the variation over the whole range of
the structure. For the “ All ” operator the following is true :

P PEPGEN
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Either x is not an element of V , in which case the implication is true in any case
- o
(a»>beawvb)

These cases need therefore not be investigated.
Or x is an element of V,then RO (x) must be true .
. o '

For the “ Existence ” operator the following is true :
Either x is not an element of V then the expression within brackets is false in any case.

L. 0
Or x isan élement of V , then Ro (x) must be true.
~‘~ M \ o -
Therefore, it is sufficient in any case to-confine the variation to the elements of V.
o

In consequence , the resulting expression reads :

AN .

- {x){x€V > Ra(x)) = Ri
o o

and the corresponding proggam :

+ =7 wi('N(“_-‘v-)) [ RE(V) A Z= z} Z=R
v 0 0 0 0 ol{o o
ki1 \¥ gL &b

In mathematical logic the following statement exists :
(x)F(x) > (Ex)F(x)

This is true,because empty sets are excluded.In the PK representation developed above, the
set of elements x is restricted to the list V, and consequently the logic statement is not
true in all cases : 0

(x)(x€EV >Ro(x))~>(Ex)(XxEV A Ra(x)
0 _ (1} :

Reason : the set of elements of V may be empty. The corresponding statement of the PK
reads : ° ’ -

(x)(x€EV->Ra(x)) = (Ex)(x€ V->Ra(x))
0 0 ‘
respectively :
(x)(XEV A Ro(x))~>(Ex)(x€ V A Ra(x))
0 0

These two statements are generally true .
For the expression :

(Ex)(x€ VAR(x)=R
' 0 0

N

.
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the correSpohding program reads :

-z WI(N(V) {RD (_V)vZ=Z}

Z=R.
0

v 0 o .

K

0 .0 60 o
i

b) The Operator. * Those which ”

In mathematical logic the expression
" SRRo(x) |
specifies the set of elements for which the predicate RO is true .

To arrive at a 'general formula, the variation of‘ x. has to be extended over the whole’range
of its structure.-. ' '

We then obtain the expression
) .
XRa(x )= R
2. o

and the corresponding program :

<] L(A(x) =2 O=e¢
\' 0
S o oXo
| WI(N(Z) [Ro(Z) »]Z =R e +1 =e
V. 0 0 0 0
K i i €
S oXo g Le @

From the list L ( A (x)), which contains all variations of the structure o, those of the
property R are extracted. The value e serves for the current numbering of the elements
of the result. - '

The problems occuring in practice are mostly of the following type :

“ Form a list of those elements of the list V ,‘which are of the property Ra ™,
_ M ‘

Correspondingly, this can be written :

X(XE€ V ARI(x))
o

Now we can say : If x is not an element of X , then the expression within brackets is false

in any case. If x is an element of V , then RO (x) must be true. Again, only the elements
of V have to be investigated.
o .

But then, the following difference exists : if several elements in the list V are equal to each
other, then they have to be listed, but only once. It is therefore sufficientto investigate all

elements of the list V in regard to the property RO, but elements already extracted in addition. |
o .

' .
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- This is accomplished through a value Z which represents the extraction list. In the beginning
the list Z equals the empty set whichis denoted by the symbol “ Q. !
0
For the expression : ' o Lo
X (XEV AR3I(x) =R .
o o
the corresponding program reads :
N -:“ i ) o = e d =% z 3
[ e . 0 ) ’
WL (N(V)) Ru(V)A3vez=>.v»z¢[+1=e A
\% L0 o\ .f0 ,0 {0 o . g
K . i i i € ; .
S oXo | - o o OXolo ol A
‘. A : LN }
Z = B‘ - ) "1\\ ;
vV|io 0 o i
S | oXo oXg :
- The expression : F ’
X (x€vVv) ;

o

then represents the list of all extracted elements of V , in which each element is listed only
o
once. '

The expression :

V=%X(x€ V)
o o

therefore, specifies, that V does not contain multiple elements. Very often a list of all elements
of the list V of the prop%rty RO is required, in which the elements are listed as frequently as
they are extracted. .

( For example : out of the list of all instructions in a machine—ready program only the
instructions for operations have to be extracted. They represent the extract list for the control
of the arithmetic unit. ) . '

Now the symbol L is introduced and the following expression formed :

R(x€ VARI(x)= R
0 0

R I AT AR
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the corresponding program reads :

0=c¢ .

WIQN(V) [ RI(V) » [ V=R| e+ 1=¢ T
v 0 0 I:O 0 } .
K i i €

It has to be mentioned that in both cases (&, %) , the sequence of the members of the
extracted list corresponds to that of the input-list \

e 0™ - .
In the PK the operators have} therefore , a somewhat «different meaning as compared to
mathematical logic, where they only define sets. In the PK they are expressions for a series
of values with a determined sequence of these elements.

& .
It is generally true that
% (x e V)=V
S
The meaning of X and % is demonstrated by an example : Given is a list V, consisting of
a series of numbers.

Ger ( x ) means ““ x is an even number ” .
V,=(0,3,54,3,3,6,12,6,4)

Then it is true, that

s ( x €V) = ( 0:3;5)4)6, 12 j C

(] .
£( x €V AGe®)=(0,4,6,12)

o L
2(x €V AGr®)=(0,4,6,12,6,4)

¢ )The Operator * That One which ”

In mathematical logic the expression

X Ro (x)
states, “ that element for which the predicate RO is true ”.
It is a condition for the application of this operator , that one and precisely that particular

element of the specified property does exist. By variation over the whole range of the
structure of x the following program is produced :

Fin> ]

L(A(x)) =2
0

o ¢} (o] [}

W1 (N (2) Rm(Z):»[z»R
i L

.
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As soon as an clement of the property RO appears, this results in R and the end symbol for
the whole process terminates it. The end — symbol in a W — program is Fin? if the whole

repititive process is to be terminated. But, since the end symbol stands to the right of the symbol}
" in a closed program, it must be increased to the third degree ( Fin3 ). For this operator

too, the expressions mostly take the following form : ‘s !

X( x €V aARa(x))=R | .
o o ' '

the corresponding program reads :

Yo WI(N(V) [ Ro(v)»[ v =R | Find
\' » o (4] o 0
K| R T

e

—PR

N d) The operator““ The Next One ”
The operator .
X RP ( x)

was introduced into logxc by “Hilbert, ( Hilbert, Bernays, “ Grundlagen der Math. 1. Band ™
page 395 ). It specifies: * The next element of the property RO; if this does not exist then -
the expression equals zero ”

3 em

We will take over this operator in somewhat different form. In the PK, the problem of
systematically investigating a set of values is mostly encountered. In this case, the list is -

investigated for elements with the property RO, until it is exhausted. If there is nio such - «
element, then it is meaningless to set x = o since this would lead to errors. An example out
of the chess - programs shows this : ?

There is the * field - occupation ” V (see216). First , out of V) the list V; containing
all squares occupied by white pieces 1s extracted. Then from theses squares, i.e. from the list
V; all those squares are extracted which are under attack by black :

-

b
Agr (V)
o
Wanted, therefore, is the list :
R (XEV A Agr (x)) !

1

However, immediately after the extraction of each of the respective squares, they must serve ‘
as input ~- values for another program , namely one investigating the freedom of movement.

This is performed in that the next element of the property Agr is always extracted from the

list V. Then the program P is executed with this element. For the first element we can
establish :

ux ( x€ V/\Aél’ (x)) =2 P(Z)
' 0 o - 0
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If no such element exists, then a substitution of x by zero would produce a false result. For

this would mean, that the square ( 0,0) ( the square al ) is occupied by a white piece attacked §
by black. Differently from Hilbert we therefore define :

-

4L . ] ‘
uxRo(x) t
as the next element of the property RO . If this does not exist, the program is terminated by 4
the end symbol. If in a repitive program the values xRO (x) are formed successively, then the
values already extracted are discarded. In this way it is possible to investigate a list systematically.
We then obtam an expression taking the form :

W ux (X€ V A Ra(x))=2Z P(Z) i
0 0 0 '
mXg o o !
This expression can, be substituted by the following program : 4)
WI(N(V))"'_ fCv,-)y=2 L+ =7 | *
\ - 0." "..p. 0 1 2 -
K- i : i
S 0 " (0,0) 0 F
w [ (Ex) [x €z AX|AZ » T
v 1 2 '
K 1
S (0,0 -mX(0,0) 0 | 0
W(N(V) [ == Z|Z A Ra(Z)» ‘ B
A\’ 0 211 . 1 » i ;
K = i1 i0 f
p’
s | |- g6 , ol o o ‘
Z =Z|+=Z | +=2 | P(Z) FIN37 | |
\ 1 0 1 2] 0
K - .0 RS -
S [ Lo g v 0 o o A

In this program an auxilitary list % is first produced from the list V by supplementing each
o

element by a Y~N~Value, which indicates whether this element has already been investigated
for a transfer to the list Z . Consequently, these supplementary data are all negatnve at the

0
start of the operation.

The real program then consists of a main W — program and a subordinated W— program. The
first one serves the repitive formation of Z and is repeated as long as the following conditions
are fulfilled :

- @) In the list Z; elements must exist that have not yet been investigated.

B) If repetitions other than the first are under way, then the preceding evaluation must have |

‘resulted in a Z . Otherwise the repetition of the same investigation is meaningless. This is
o ‘ :

T gy e =y,
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specified by the auxiliary value Z, which héﬁ therefore to be positive to start with.

The investigation of the next element of Z, is performed by the subordinated W — program.
In the list % those elements are investigated which have not yet been specified ;

2

~ -

(z) _
Vv 1
il

K

As soon as the predicate R3 becomes true for such an ‘element this is made equal to Z, and
specified in-the list Z; : '

\‘- -

SNV
\4 1
.K il

Further, Z,. becomes positive and with -Z(; the program P ( Z) is computed. Then the
subordinated W — program is terminated ( Fin® ).

.

.-

. \\
Generally , RO as well as' Z, are not influenced by P ( Z ). This implies that the list Z;
remains the same in all repetitions, with the exception of the marking of the already extracted

elements. Thus the criterion for the extraction of the elements also remains the same for all
variations. '

1t is then not necessary to extend the investigation for every Z over the entire range of the
list % in each repetition. Only the elements not yet investigat%d have to be considered. This

corresponds to a systematic investigation of % and of V respetively.
o

First the following program can be established :

WI(N(V) [Ro(V) »[V=2Z | P(Z)
0 o .l o o o
i i
P4.49, chapter 2),pagel 29 gives an ekampleln which this formula must be applied, since RO is

currently varying.
There RO has the form :

Z; has'a different value in each repetition. In order to stress the fact, the symbol p was
provided with a dash

e) The operator A (x)

The following is stated :

the operator A (x) corresponds to the operator u ( x ) with the only difference that with it ,
the investigation of V starts with the last expression :

-

A
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Wl: Ax(x€ VaRa(x )= 2Z l P(Z)}
0

0 0 !
corresponds the program: . ‘- . ‘s !
N(w=e¢ #
0

Wle$0 » [ —= Z 17
;\__“_ 1 . N
“W[e+0 »[ Ro(V) »[v=2Z| +=2Z| Fin3 i

0 0 0 1
_ € Le !
€e-1=¢
S N 2 1¢2 | '
B A ;i

Corresponding considerations can be applied to combinations of several A — and u-— operators in
one W-—program. More about that in the chapter “machine—ready programs ”. 5)

T OOME O EAWN ARE TR WA P

f) p —Operator on the right side of the symbol =

e

In the expression:

A g

the equation within brackets specifies, “F results in the next element of the result R, . which
consists of a list of several successively evaluated elements.

L3

The following expression substitutes the program : b
O0=>¢| WF=R|e+tl=e¢
\Al o
K €
8) Designation of Variables and Intermediate Values l

In the expressions dealt with in paragraphs a) to f), X represents a bounded variable. If several
of such bounded variables appear in one expression, then they have to be designated differently. If
there are only two, then the symbols x and y can represent them advantageously. If there are

more than two, then it is better to use the symbols x, x, x,
ol 2

Similarily, the intermediate values Z,, Z; ... have to be distinguished by sub—indices, or by a

change of the designations in the case of interlinking of operators. This also applies to the variables

of the program within which the operator appears. For more about that see chapter * machine—ready
programs ., 5)
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h) Implicit and Explicit Expressions with Operators of the Predicate — Calculus

The discussed expressions take one of the following forms:

(X) Ro (X)"’R ‘ i - a .
0 _ C
x)(x€V->Ro(x)=R
0 0
(Ex) Ra (x) = R
;\5: 0
(Ex) (X € VARD (x)) = R
0 0
# Ro (x) = R
S o
(xEVAREJ(x))=>R ’
- 0.,“‘\_. 0
2 (XEVARD(x)) =R
0 0
X Ra(x)=R
0
¥ (x€VARD (x)) = R
0o 0
w l:p.x(XGVARD(x))=>Z l P(Z)]
0 .

)\x(XGVARD(x))=>Z P(Z)]
P o |

P -

LI INE PR R e

At first glance the values R and Z seem to be represented explicitly in these expressions, because

they are located on the nght side of the symbol =.

The programs to be substituted for these expressions, indeed, in any case provide a systematic
computing method. But often this systematic method is redundant and has then to be substituted

by a more effectivw one..
The implicit expression:

%2

tax+b=o
for instance, can be transformed into the following explicit form:

x'(x2+ax+b=o)=>R
)
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3
H
:
A
In this case, the systematic process would request the systematic variation of x over all possible 1 &
values, in order to investigate, if the proposition within the brackets is fulfilled. Whereas the , i '
well-known explicit solution is the following .- ! ;
_ . . ;
—22 + a¥4-b=R IR
0 C : oo i
. , S
A 0 "
"—af2 — a%4 —b =R ?
Lo o B
“ . \“ - 1 . ,:
- . ~e ,;
In statistics , however, expressions in the general form given above often already represent the } :

explicit solution because a better method does not exist.

S
e
-y

The systemqtfc\; method corresponds to the sorting procedure with punched cards. The data on

the cards correspond to the elements of the property R O , several runs are necessary if the %
criterion is complxcated Ax\ interesting example is the followmg z H
\ *

Chess-prografns P A32 g

List of elements between V and V :

0 1 §

RA29(V,V,V) specifies : V is situated between V and V. o

ol 2 S _ 1 2

& e

Then can be stated :

X[ RoA29(x, V, V)] =R

o 1 0 F
In this case, the systematic procedure would consist of an investigation of all 64 squares of the
chess-field to find out if the criterion RA29 ( x, X, Y ) is fulfilled for them or not. The '
volume of this computation is still tolerable, but another method is much more efficient. H

Starting with V in the direction of the element V| the elements are generated. Then we obtain
the list of the wanted elements in a direct unbroken sequence. In a corresponding way in PA34
those elements are generated which are in knight-relation to the member V '

This method of constructing the wanted values will be called * generating method ™ in contrast
to the “ systematic method” . The rules for the generating method have to be established
specially in each case. : 3

AN
“Therefore, it is not possible to decide easily whether an expression corresponding to that on
page 1s implicit or explicit. There are programs and various expressions equivalent in them-
7 selves available which reach the target in different ways at different expense.
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8) Miscellaneous

a) The Opcrators AR, VR, IR, 7R

For the expressions : L ae.

V. AV..AV..AV =R
V]oo o1 0i Onl O
slto .o 0 o 0

V. ¥V vV ..vV =R
V]00.7,01 0i Onl 0
slo 00~ 0 ~o0 0

V +V.+V..+V =R
V{oo 01 0i Onl 0 ,
‘Als "s 8 8 8
V. XV..XV.XV =R
Vioo 01. '.-9.'i‘..:‘ On-li 0
Als 8 8 *- 8 8

the following programs can be established in accordance with the rules discussed hitherto :

+=Z| Win) [V A Z=2Z]]Z=R

v 0 i 0 ollo o
S 0 L o o ollo o

—=Z2Z| Wi(n) [V v Z=21|Z=R
v 0 0i o0 ollo o
s 0 Lo o ollo o

0=Z| Wiln) [V +Z=27Z=R
' 0 i 0 ollo o
S '8 8 8 s8lls 8

1=Z| Win) [V XZ=2]Z=R
v 0 0i- 0 ollo o
A 8 L s s slls 8

For the foregoing programs the followiné abbreviated notation can be introduced :

Wi(@®m(V=AR) Wi (n) (V=VR)
0.i 0 0. 0

Wil (n)(V=ZR) W1 (n) (V=T1R)
0i 0 ' 0i 0
The symbols A,V , Z, I have to be pronounced :
conjunction element of ...
disjunction element of .....

addend element of ....
factor of ....

B R R e A T

-

SR e Ny gt e S PP Pat

et

e

3 OINTE h SN Adke R W

v



- 80 —

It is advantageous to employ the foregoing symbols if elements in a series of operations are
generated successively. In this case it is not necessary for all of them to appear in a closed
W—program. Rather expressions of the following form are also possible:

.,

“y .

F0 = /\Ro ' s
F, = /\Ro

N
F, = A R,

But in a progtam only one of the four operators’ A,V , T, Il may be applied to the same valu

( see chapter 4, page ).

. .
b) Representation of Rowers ',

To position all variables on the main line the values representing powers can also be positioned
on the main line. The original position of the values can then be indicated by a broken line

analogical to the representation of composed indices ( see page ‘7) .
v
V1 = V-LV_
0 o 1

By this method any randomly complicated expressions can be représented as powers :

v Ly

Vil 2
K| 13 0
Al 8 9

¢)_Empty-List and Variable List with only One Element

All data composed of a series of elements of the same structure can be defined as lists

(S = mXo , see chapter 2, 98 ) . If the number of elements of the list is variable, then the
special case can occur, that this number becomes zero. Such a list is generally specified by the
symbol 0 .

The expression :

b =2
o
OXo

denotes, that the list Z, represents an intermediate value which is empty at the start. This is
the case if for instance the result of a program is a list, the elements of which are generated
successively. At the beginning this growing list is empty. If may also happen, that such a list
has only one element at the beginning. We then state :
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vV = Z
v o 0
S /] oXo

-
~ 4 -

This specifies that V is the only element of thelist Z . In this exceptional case, variables'of
‘ ) o

different structure may appear on the two sides of the symbol = . This is permitted only in

this case.

d) Statement Symbol
If an expression represents an identity, i.e. a generally true proposition , then the statement

symbol is positioned before the expression.

.
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Chapter 2

()' u 9?_‘1‘353‘ Programs
Uorrel, hiv o,

D Operations'with\Data of the Structure So

i_‘~ -

~

II) Operations with Data’ of the Structure Si.n

1) Programs with ane Input Variable of the Structure Si.an’
Cor P1.0 'to P1.9°

2) Programs with ‘one Input Variable Sl.n and a result Sl

='W PLI6 to P127

3) Various Programs with a Variab'ie Sln
' P1.32 to P1.41

4) Propositions on two Data of the Structure Sin~
P1.64 to P1.75

5) Operations with two Data of the Structure Sl.n
'P1.96 to P1.129

6) Relations between 3 Data of the Structure Sl.n

III) Programs with Pairs of Data_S 2

1) General Programs P2.1 to P2.9

2) Relations between Pairs of the Structure 2xS1.n, interpreted as Areas |

characterizes by Binary Numbers.  P2.16 to P2.34
a) Propositions on not ordered Pairs
P2.16 1o P2. 24

b) Pr0po$itions on ordered Pairs
P2.32 to P234

IV) Calculus of Lists S3 = tXo

1) Quasifixed Programs

a) Propositions on Lists P3.0 ‘to P3.9 '
b) Operations with a List which produces another List
P3.10 to P3.16

¢) Programs for sorting ect. .
P3.24 to P3.27
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d) Programs for Counting
: ' P3.29 to P3.30

e) Propositions on two Lists
P3.32 to P3.36

f) Proposition on two Lists concerning a Relation R
P3.40 to P3.44

g) Development of a new List from two given Lists
‘ P3.48 to P3.52
N Lz, Qz, Nr

2) Free Calculus of Lists - ~ . P364 to P3.71

V) Programs with Lists of Pairs

( Calculus of Relgtf‘gns )
1) General \
2) Propositions on Lists of Pairs'>
a) Front and Back Elements ‘of same Structure
" P41 to P4.10

b) Front and Back Elements of Different Structure

3) Programs to order Lists of Pairs
Od2 to 6 P4.24 to P4.28

4) Field ( Front Area ) and ( Back Area) of a Relation
P4.32 to P4.34

5) Programs on Structures of Relations
P4.40 to P4.52

General Investigation for Coherence
P4.52

Appendix to chapter 1and 2

109
111

116

116
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132

141
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L. Operations with Data of the Structure So ( Yes-No-Value )

1) Operations with one Operand
Negation : V in the meaning of the calculus of propositions
0
2) Operations with two Operands
Vo V., Valgesfor 8 : V,N\,»,~ +
o 1 )
in the rﬁe‘ani‘x‘lg‘-ﬂqf the calculus of propositions .

Fuhction t;ble :

i V V | Operation
“ ol VA->~ +

D
. ‘ DU U S
AN 3

U U T
+ 4+ 0+ F o+

!

+ +

II. Operations with Daga of the Structure  Si.n

Sl.n = nxSo

1) Programs with one Input Variable of the Structure Sl.n

Propositions on Sl.n

R(V )=R
\' o 0
S 1.n o

P1.0 General Disjunction- (¥~ M( \é)
5

@ ( At least one element is positive )
(Ex )(xE€EVax)=R
\% o (o}
S o In,o o

Explicit form
—=Z | WL (N(V)) ZvvV=2Z

\' o o o 4} o
K i
S o 1n’ _ 0 o 0

Alternative representation

WI[( N( V)) [ V= VR
(o] (o] (o]

ln’ 0 0

.
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P1.1 ‘General Conjunction O ( V)

0

( All elements are positive )

l(x)[(xev-*x)ﬂi :

4

\" . o] ;0 ?
S o o ln o 0} f')

Explicit form - 7

+=Z | WI[(N(V)) [ ZAV=2Z Z= R
\'/ o 0 0. 0 o o o
K -‘ i
S o ® In~ o o o

Alternative representation -

w1 \(‘N‘(.'{«._)) rv= R

P14
P15
Ple -
P1.7

W1 (N(V)-1)

0 0 o
) i
0 0

VdV=2Z1]I0Z =R

A% .0 o o 1 1 o
K ‘ it il g
S . in o o o Inl o
values for & :
program
notation o Meaning
P14 Vv of two neighbouring elements, at least
one is positive
P1.5 ~ All elements are equal to each other
P16 + All elements have alternating values ]
PL.7 > 1eft of a symbol “ — > , there is no symbol + ”

B
L3 T R OB Al R YEE

L]

T

e

T Y B s v

ket Te g e =
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R e P S Sl S
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P1.8 Symmetry :

o =i

nl = j ‘ + =2
' 0

i

Wi ja2( V~V)YAZ=2Z| i+l =i/ [jl=>]

PO O A VI VI

2 a—

B R R e e A T

v

o o .0 o ;
K i I
S o o o o j
Z=R, o
o o ..
P1.9 Just one element is positive
. =2 Z | WI[(N(V)[VAZ=>AR| VvZ=2Z][Z=AR
v "o o o 0 o o o
K i
S o in Q o o o (o}
LN
P1.9 'Altemative Representation
_=1Z +=>Z
o 1
Wl (N(VW))[ZA(V>Z)=2]|2ZvV=Z ZAZ=R
\% o 1 o o i o o o 0 o
K i i
Examples for P1.0 to P1.9
v Rl.o R1.1 R14 R1.5 R1.6 R1.7 R1.8 R1.9
o 0 0 o 0 o o o o
— -— - + —
+ + + + +
_— - - - + - + + . -
—+ + - + - + + - +
+— + - + - + - - +
+ + + + + - + + -
+H++ |+ + + o+ - + + -
+—+ | + - + - + - + -
_—| - - - o+ - - + -
H——| + - - - - - - -
+H—t++ + - + - - - + -
—_— |+ - - - - + - -
—t—| 4 - - - - - - +
o — |+ - - - - — - +
—_—+ | 4 - - - - - - +
+—t—+ | + - + +. - + -

e —

BN ARE BB O

» Tem

~onyren

-

e

Y ot 2.

B e T

MW
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2) Programs with one Input Variable of the Structure S1.n and a Result of the Strukture S1.n

R(V)=R
\' o o
S 1n 1n

PL.16 General Negation

WI(N(V) [V=R
. "\"-\0. {o o:]

N
4.

SN

Operation symbol: © V
o

PL17 Mirage

W2(N(V)) [V=uR
q {;Q‘..‘ q‘l

) ced
1

P1.18 Upward Implication

—=2Z|WI(N(V)[ZvV=>Z | Z=puR
o o o o. 0| o o
A g
supposition:

(x) R1.7 (R1.18(x))
P1.19 Downward Implication

R1.17 (R1.18 (R1.17 ( V ))= R1.19
o o o o

supposition :

(x) R1.7 (R1.17(R1.19(x))

P1.20 Identification of the First Positive Element from the Left

—=Z|WI(N(V)[ZAV=R ]| ZvV=1Z
o o oo 0|0 o0 O
i i
supposition:

' (x)l:Rl.9 (R1.20 (X)) vx = o]

o o

IO R IEW AR PR PERA W

-

e

.

Nk R or g )

A aad

»

S e gt e p g Y e

e
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P1.21 Identification of the First Positive Element from the Right

R1.17 R1.20(RL17(V)) =R

o o 0 o )
supposition:
(%) [RIS (R121 (x)vx= o]
0 .

P1.22  Shifting fo the Right

_=>R|WI fN’(V)_l)[w»R :l
o

[o)

o o o
i i+l

~ <

P1.23  Shifting t& the Left

—-=R Wl(N(V)—-l) V=RT .

A\ o .é\ 0 :
K n-1 it
\if -,

P1.24  Circulation to the Right )

V=R Wl(N(V)—l) V=R
[} [o] [

n-lo

~ <

P1.25 Circulation to the Left

V=R l(N(V)—l) V=>R
o o iw o o0
1

0o n-— I1+l i

~ <

P1.26 Counting Forward

+=2Z |WI(N(V)[V+ Z=R| VAZ=1Z
A" 0 o o O o0j 0 O o
K i i i
P1.27 Counting Backward
—=ZIWI(N(V)[V~Z=>R]| VvZi=2Z
A" o 0 0O 0o o 0O 0 ©
K i i i

Alternative Representation for P1.26, P1.27
P1.26 V+1=R
o o

P1.27 V-1=R
o) (8]

.
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Examples for P1.16 to P1.27

v
0"

R1.16

R1.17

R1.18

— 88 —

R1.19

R1.20

R1.21

~+
++

et e

—
——tt
——

-t
HHH+

“HH

A

———t
—
—_—
S
——t
R

° <

R1.22

R1.2§

——t

—+—+

—F—+
—++t
—+t

—_—t
—t—me
Fot—

—
—

et
—t e
+—t

—
—+tt
+H—+
++++

PR

T IRUN AR I P P

v
3 cem

b e o

o s e e vt o
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3) Various Programs with an Input Variable of the Structure Si.n-
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P1.32 Counting forward with signal in case of overflow

R(V)Y=(R, R)
\Y4 o o 1
S l.n 1.n o
+=22Z |W1 (N(V))
\' 0 0
K REIURE N

-
\‘v -

V4 Z =R

o
i

o o
i

o
i

P1.33 Counting backward with Signal in case of underflow

R(CV)=(R, R)
\Y o . o© 1
S lnm .. 1n" o

—=Z W1 (N(V) V~V=R| VvZI=Z
\Y% o < g, o o o|lo o o
K i il
P1.36 Transfer controlled by V:
Ub : 1

U (V, V) =R
v o 1 o
S l.n 0 ln

Vﬁo=RlV9V=R

1 o 1 o o
P1.37 Number of positive elements

R(V)=R |m<n
v o -0
S i.n 1:m

o=2Z (Wl (n) Vr»(Z+,l=>Z)’Z=’R
\' o | o o o o o
K i

P1.39 Assignement of data R of the property R1.9 ( R ) to data of the structure Sl.n,
’ ) )

interpreted as binary number

R(V) = R
A" o 0

v R <

o] li

i

L

o

2Lln=m

1.n l.m
0o=Z |+=Z V/(Z=R
o o ! o{ o o
1.m ‘n
\u

FR1I9( R)
)

o

VAZ=>2Z

o)

|

»

ENLI ANCET N g

& eeewr 3 T

N
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R

ke
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Z=>127
1 2
i itl
o o
-1 =2
)

Examples
\Y 0 1 2 3 4 5 6 7
0
— + - - - )
—+ ~ - + - 2
He| - - "= + - - - 13
+++ - = L= = - - - *
N
P1.40  Shifting upward by a given number of positions with signal in case of overflow
"RV, V)=(CR, R) m<n

v o 1 o 1
S In Im iln o

vV = Z VvV =..17Z
v 1 o o il
S 1.m Im 4an '-."\.‘,‘l.n
W[z to0=>[=-=Z|W (1)
v o 2 :
K ' o
S 1.m 1.m 0

Z=>»>7Z |Z=VR A
\Y 2 1 1 1 o
K n—1
S L1ln 1ln| o o I.m
Z = R -

A\ i o
S 1.n l.n

7Y

P141  Shifting downward alanlogous to P1.40 ( see P1.23 , page 2

4) Propositions on two Data of the Structure S1.n

PL.64
Pl65 VY
Pl66 S
P1.67
P1.68

R (V, V )=R
-0 1 (o]
ln 1n ()
Wi(n) [VOV=AR
o] 1 [}
i

> |

i

O

I OB . R SR aRe PR OIS W

B LI Rl A TP

Ao g

P s
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Substitutions for " o

0
Pl.64 2
P1.65 A~
P1.66 g
P1.67 it
P1.68 . ~

N '_\

For Rl.‘68\‘(‘4V.‘, V') _can be written :

o
Ry

P1.72

vV<V=R
o 1 o
S In 1n o

<

Wi(n) V=

o
i
o
P1.73
vV =2 V¥V
o 1
1n 1n
P1.74
VL<V=R
Vi]o 1 o
S ln ln o
Wi(n) V=
v o]
K i
S o
P1,75‘
vV > V
0 1

1

Z| V+V=Fin2]|Z=R
0 o 1 o] o
i i
ol o o o o
as P1.72 , but exchange V by V
» (o] 1
Z| V=2 | VA4V=Fn]|ZAZ=>R
o 1 1 o 1 o 1 o
i i i i ‘
ol o olo o o o o

asbPl.74, but exchange V By Vv

4]

1

4. .

~e

— P

BT . M BEEN aEe e e P

b2 0 od

T b Forarr N et

S e g e

Pt W A ey e A P R

xvet



5) Operations with Data of the Structure S1.n

R(V, V) =R
v o 1 o
S In 1ln I.n
P1.96 Wi(n) \Y%
P1.97 v |- 0
PLIS K |. i
P1.99 S, N 0
P1.100 IR .
P1.104 Maj ( V, V) =R
o1 o
la la ln
V € V=Z|Z»>V=>R
o 1 ol o ‘-,~‘o","\"x o
PLIOS Min (V, V) =R
o 1 o
V € V=Z!Z»V=R
o 1 o o o 0

P1.106 Ordering of two data, the lower value first

Ord O
R(V,V)y=(R, R)
\'% o 1 0 1
S iln 1n in 1n «
vV vV=12 Z#[V=R V=R
o 1 0 o 0 o 1 1
Z>[V=>R| V=R
0 1 0 o] 1
P1.107 As P1.106 , the higher value first
V2V=1Z Z-.->[:V=>R V=>R:l
[\ 1 o o 0 ) 1 1
Z>[ V=R | V=R
o 1 o o] 1

- 92 -
¥
H
‘ Op.—
6| ‘symbol |
8 Vv=R P1.96 v v 4
1 o P1.97 A A
i i P1.98 - 3
o o P1.99 + % ‘
P1.100 ~ e~
§
( The higher of the two valuesV and V )
o) 1 g
¢
Z»> V=R R
o 1 o f
3
( The smaller of the ValuesV and V 1
o] 1 ‘
= £
Z»> V=R v
0 1 (4]

Ord 0( V, V)

]
J

1

apr

-

R R

S N W g M A PR Wt M o Y P @ en

e

g v
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6) Relations between .3 Data of the Structure Sl.n

_ : H
V,V, V interpreted as positive integer binary numbers. .
ol 2 ot
[R(V, V,V)=R | | |
\' o 1 2 0 | R
S In tn In" o

P1.128 V' lies béiweqn V and V
o T b1 2

~e

St et W g gt M A PP B M T Yed Ror T g et e S

Zw ( V,V,V)
o012

e

(VKVAVSV)Vv(V>VAV>V) =R

' 1 ") 0 2 . . 1 o 0 2 0 )
P1.129 V lies outside of-.-y\,é_{nd V-
o 1 °- 2

(V<VAV<V)v('V>VAV_>V) = R
o 1 o 2 o 1 o 2 o

3 TR . P EENN a3 A R TR P

II. Programs with Pairs of Data

Structure of the input 2Xg, (o, 1) respectively, ¢
In the first case the structure of the front element is the same as that of the back element. In the second
case the two elements of the pairs are of different structures. General structure —symbol of a pair: b

$2=(0,7) '
This is mostly substituted by special symbols ‘ t
. 2Xo; (0,7);2 X 81l
In the case of 2XS1.n, the operations of section II, 4, 5 can be applied to the singel elements of the
pair.
1) General Programs : : [ Ny

P2.1 One element of the first pair is equal to one element of the second pair ( General Coherence ) !

R(V, V)=R
\"/ 4} 1 o
S 2Xo 2Xo a

V=VvV=VyV=VyV=VaR
Vio 1 o 1 o 1 ] 1 V]
K ") o o 1 1 4} 1 1 . _
S g o o 9 o o o g 0 ' !

RN
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P2.2 The front elements or the back elements are equal to each other ( coherence with different
structure of the front and back elements ) .

R( 'V, \"4 ) = R ."» ..
0 1 o , Ll
(0,7) (0,7) 0

V=VvV=YV=2R
Vio 1 o 1 o
K|o "a-~ .1
o_"r:‘"'r,‘ 0

Q

~

S
P2.3 One pair is the mirror ‘image of the other

RV, \£)=R

A" o .l .0

S Ko 2X6 o .-
V=Vavswdyy

Vio 1 o 1 o °

K| o 1 1 o

S (/] (1] o o 0

- _P2.4 The. pairs are equal , or one pair is the mirror image of the other

V = V v RZ3(V , V) =R
v 0 1 o 0 1 0
S 2Xo 2Xo o 2Xa 2Xo o

-y

P

T BN ARE P PIA T

> oew

e

P2.8 The realtion Rx is true, at least between one element of the front pair and one element of the

back pair ( General coherence by Rx).
(R(R )V ,V ) ®R

\"% o 1 0
S Xo 2Xo o
Rx (V, V) vVRx (VV)VvR (VVW)VvVR (VV)=R
\4 o 1 ‘ ol ol ol 0
K o o ol 1o . 11
S ] (0] oG o0 g o o
Ak\ /A

X

T

(WS

B A P e B e i o T T R et

gt

e

Mm
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[
P2.9 Linkage
One element of the front pair is equal to one element of the back pair ; the others are not equal.
: !
R(V, V) =R .
v o 1 0 ° © Ot
S 2Xao Ko o !
VEVAVEVAT(V=VAVEV)y (V=VAVEV)]=R ’
Vie o [ 1 o 1 o 1 o 1 o 1 o
Klo 1. 06 1 o o 1 1 o 1 1 o b
N lW(WVEVAVEV)V(VEVAVEYV) '
Vv o 1 o 1 o 1 o 1 i
1

K L o o ' 1 1 o o U

v

) . .
2) Relations between Pairs of the Structure 2X81.n, interpreted as areas charcterized by binary

numbers %
S T

a) Propositions on not or‘d_eré\q pairs .
’ oL 5

R(V, V )=R E

A" o 1 0 )
S 2X1n 2X1n o . F

P2.16 The elements of each pair are in themselves ordered :

e

VEVAVESV=R o
Vio o 1 1 o
Kijo 1 o 1 ¢
S ln 1ln 1ln 1n o

P2.17 The pairs are ordered in relation to the first bound.

R216 (V, V) AV V=R | f
\' o 1 o 1 o
K o o
S ln 1n In In o
P2.18 Both areas are equal to zero : . l
V=VAV=YV=2R
Vio o 1 1 o ‘ : !
Klo 1 o 1 0
P2.19 The areas are separated L i+ {

00 11 00 o

Mgj ( V,V) <Min ( V,V) v Min ( V,V) >Msj ( VV) =R
: 11
ol ol ol ol o}

r <

o Y pe

A R e A

S g gt o r A R B

R

mm
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P220  The areas are adjacent
b ——4

R29( V, V ) = R
A o 1 o
S 2Xln 2X1In o
P2.21  The areas are overlapping —_——y

P .

, "R1.128 ( V,V,V) R1.129 ( V,V,V )T v
Viio | o011 0 011
KIL " o 1ol i

~R1.128 ( V,V,V) A R1.129 ( V,V,V)] =R
Vilo o 11 o ol 1l o
K iL I ol oo 1
P2.22 The first area lies within the second .

Zw ( ,V,V) =« Zw, ( V,V,V) =R
v ol 1. 7% o011 0
K ool . lol

P2.23  One area lies within the other .

R2.22 ( V, A\ ) VR222 (V, vV )=R
0 ") 1 o) 1 o o
o 2X1.n 2X1.n o 2X1.n 2X1.n o

» <

P2.24 The areas have more than one point in common

V £ V A R219 (V, \ ) =R
0 1 o o 1 o
2X1.n 2Xin o 2>.(1.n 2X1.n o

Alternative representation :

R221 ( V,V) R223 ( V,V) =R
o) ol o ol 0

b) Propositions on ordered pairs

Supposition :

R216 ( V ) AR216 (V )
Vv 0 1
S 2X1.n 2X1.n

Marginal Values

R(V, vV ) =R

\' 0 1 0
S 2X1.n 2X1In 0
B R2.16 R2.16

LI R R L A o ]

~ry

-

e

-

RN

Yo g
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et

Mm
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P2.32_ The pairs are equal

o 1 o

V=VAV=V=°R
o) 1
0 0 1 1

\'
K

P2.33  The areas are separated

V<VvV<Vs=R
VI]io 1 . 1\ o o
1 o ‘1 :»,,0

~e

P2.34 The areas are neighbouring

V=VvyV=V=R
Vi]o 1 1 “_ o o
K 1 0 1 (o)

- 97 -

-

-

etc. corresponding to pagq.'q 5’\“‘ - q{) L
~ ') .

IV.  Calculus of Lists

S3m=mX o

1) Quasi fixed Programs

The structure of the results are only functions of the number of elements of the input value, but

not of their actual variation ( see chapter 1, page 5§)

a) - Propositions on Lists

 P3.0 Element of a list

R(V, V ) =R
\4 0 1 0
S ¢ mXo

abbreviated representation :

Marginai values for P3:l; P3.2

R(V ) =R

' o 0

S mXo o)

vV € V ( see
0 1.
W1 ( N(V)) V=V=VR
\% 1 o I o
X i

chapter 1, page £8 )

.
3 I . MY RS WP PN P
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REZ I o B I P S AU
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P3.1 All clements are equal to each other

Implicit form XEEV->x=V)=R
v o o o

K o
- S 6 0 mXog ¢ o

o o o]

» Explicit form W1 (m) {V =V= /\R}
o i

. “ ;

P3.2 All elemen_.ts‘dif?ér form each other
Implicit form

®) Ey) (xEVAYEVALK) +1()>x+y) =R ,
0 o0 (&)

Explicit form -

Y

W1 (m) [ W3 (i+1;m3 V3.4 Vi =AR
0 1 o Jo ﬂl o
g g 0 _

v R <

(see chapter 1, page é‘?’) v
Marginal values for P3.4 to P3.9
R R (V)= R

v o o

S mXo o

-

P3.4 There is a pair of elements for which the relation Ro s true

Implicit form

Ex)EyY) XEVAYyEVAIX #y)ARO(xy)= R
o o 0

Explicit form

W1 (m) [ Wi(m) 1#1 - Ra(Vv 1)=’VR
Vio 1 j j
K ,
N

lnln_

e

3 W L M AONY ARE T YT

LI,

S e e e e

o B Y et Borarn ¢

-y

R e O

Rl o
e

Mm

P3.5 There is a pair of adjqr’é’nt elements for which the relation Ra is true /
Implicit form

(Ex)Ey) (xEVaAyeEVAIX)+1 =1y ARo(xy)= R
0 0 0
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Explicit form

W1 (m-1) [Ra(V,V )=VR
0o 0 (o]
i i+l

~ <

P3.6 For all adjarent elements the relation Ra is true
W1 (m-1) [ Ro’(V,V )= AR
. 00
i il

~ <

e

P3.7 For every element another onc exists for which the relation Ro is true

Implicit form

5 (x)[xéV—»(Ey) l:y\e ,VIU(X) + [ (y) A Ro(x, ﬂj» R
o o .- g o

‘ \
1

Explicit form ey

. R - ‘ :
W(m) 1#1—» Rao i) =V1Z Z= AR
| R

.8 For every element and all elements following it the relation RO is true

Wi(m) |-=2Z
o

V] o
K

Implicit form
x) &) [ XEVAYEVAIX) <Iy) - RD(x,y)J

o o

Explicit form

W1(m) W3G+lm) TRA(V i, V ~i)=> R
o] { 1 o [ o_l_o o_J—l o:l

P3.9 Coherence exists between all elements according to the relation Ro
Implicit representations by the predicate Ro' (x,y)
“ Between x and y the relation Ro is true directly or indirectly”.

v
K

Recursive definition of Ro':
Ro(x,y) v Ra(x,y) =+ Ra'(x,y)
Ro'(x,y) A (Ez) [ Ra(y,2) v Ro(zy)] - Ro'(x,2)

x) ) l:x EVAYEVAIX) +I(y) > RD’(x,y):I

) o

—evepe ~vy

LRSI ARe TR PEE P
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Explicit form :

v R

v R

P3.1

Lz

v <

~ <

Y
o o
o
o oXo
we'f Z=1
o
l‘ _,r/ \'0‘ \\1 -
0 Ut -
o o
LZ|{Z , 8 [ x€EVAx€Z A Ra(Zx)v Ro(x2)
o * 0 0 ‘1 1
L OXo 0 L'g ‘mXo tXo g0 6o

by

1(x)(x € V->x‘€'Z).'\?.,=> R

o o o
o o mXo ¢ oXo 0
LZ(x,y) means: MO

Concatenation of the lists x and y ( see page 109)

) Operations with a List, which again produces a list

QAddition of an element

New element last

1Z(V ,V)=R
o 1 o
mXo ¢ (m+1)Xo

Wi (m) V= R V=R
. o 0 1 0
i i m

P3.11 New element first

Lz

LZ(v,v)=R
Y o1 o
S g mXo (m+_1)Xa

V=>;1R. W ruv =>;,(R]
Vio o 1 o

DXo‘

el

S —

3OS . % EWS ade  Pob N P

oy

S e R A e e

LI

S e e gy N ke

L e e e Y dliad Zolh 2

MM



P3.12 Insertion of the element V in position V of the List V

I

Condition 0 < V<m
2

R(V, V, V) =R

v o) 1 2 o
S mXg 0. . "ln " (mt+1)Xo
WI(V) VSR V=R V
\" 2 o o} 1 o .| 2
K i i
q’\
P3.13  Substition of the element in position V
2
_ ) X
Condition: 0 €V <L ;h;
2 -
R(V, V, V) >R
A% o 1 2 o
S mXo ¢ 1.n mXo
W1 (V) V=R]|V=R ~V
v 2 o o} 1 0 l 2
K i i

alternative representation

v = 2 V=12 vV |Z* =
\'% 0 o 1 0I2 0
K

S | mXo mXgi® o 1nl mXo

P3.14 Cancellation of the element in position

R(V , V)=R
o] 1 o]
mXo ln (m-1)Xo

Wi (V) V=R
A" 1 0 0
K i i
P3

.15 Splitting of a list

v <

1

w3 ( V,m-1) I:v»a

- 101 —~

2

o
W3(V, m)
2
by Vinlist V
1 0
W3 ( V+lm)
2 !
R
o
mXo
V in the list V
1 0

o o
itl i

|

V=R‘|

(] 0
i i+1J

Supposition : The structure of the individual elements is composed.

Kk(o) =7

-y

— T

B AN AR P P
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e
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P3.16 Inversion of Sequence
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Meaning: * the component k of ¢ has the structure 7 7.

Spxk ( V) =R
o o
mXg T

Wim) [V=R

o o
ik - i
o
‘T\ :‘7'

R(V) =R
0 o
mXo mXo

Wi@m) [ V=R

W,

o o0- N
i m—1 —i
g @

c) Programs for sorting

Applicable for lists with elements for which the relation x <y is defined. ( “ xlesserthen y”

or “x ranges before y” respectively ).

P3.24

R <

ux[xEVA(y)(y EV*xgy)] = R
o o ° o
Min ( V) = R

o o

mXe o

V=2 | Wim) [Mn(ZV) =27|Z =R

) 0 00 0 o o
0 i
o ¢ ‘00 ] (/] /]

”»
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P3.25
ux[xGVA(y)(yEV-rx>y)J = R ‘ “. .
o 0 0 ) ‘
Max ( V) =R ’ '
\Y 0 0
S mXo . ¢

V=2 |Wlm [Mj (ZV)=2]/Z=R

Viio o | .. 00 o o o0
K| o i ' N v
S ] o] o0 e] o o

P3.26  Proposition & ** The list is ordered ” .
Ord O Predicate symbol ~Ord 0( V)
: ‘ S e
N \
( R3BRLIY) (.V ")*» R
o o o . o
mXln - o

Implicit form

(x)(y) [xEVAyEVAI(x)<I(y)->x<y] = R
o 0 o
This implies
(x)(y) [xGVAyEVAI(x)+l=I(y)—>x<y:l = R
o o o
This is identical with

( R36( R172 ))( V) =R
o] (o] (o] (o]

Explicit form

WI(N(V)-D[VL<V=AR

\Y% o} o o o
K i it

mXln Lln ln o

S
P3.27 Ordering of a list. Lesser elements first .

—_—.

Ord 1 Od 1 ( V) =R
’ \" o 0
S mXo mXo

For implicit representation we first need a criterion stating that the two lists contain the same
elements regardless their sequence .

-~

i .

. WS AN R P W

’
> e

e

T e Per ettt ¢ et

PN

KUY

o S I N e o T

e

o ieer

o



- 104 —

vV & V
\'% o 1 !
S mXo mXo } .. .

Definition of =6

V& V= Di(x) | xeV- N[S\/(yEV/\y:x)}FN [Q(yev,\y=x)} ‘
o 1 "o 0 1 ;
In consequerice of that we get the following implicit expression for P3.27 : .
P3.27 L. -
X x&V A 0rd0(x)= R _ i
o )

The following methad is applied : the sorting is accomplished step by step by a sorting of the elemémsg
o to i. After the list is sorted up to the element i, then the element i+l is inserted into the

already pre—sorted list as follows, the element i+1 is selected and substituted for Z; . Z; will then
be continually compared to the |§3ement €, beginning with e =i If Z; is less than the element ¢,
then this will result in the new élement e + I, and € will be lowered by 1. Otherwise Z results in
the new element € + 1 and the’insertion process for the element: € + 1 will be terminated. If the
‘element, which is to be inserted, is less than all other elements up to i, then € = —1. In this case g
this results in the new element O. Z0 is the list, which has to be currently transformed. At the “a

beginning it equals X ,in the end it results in R,
o

e

The variation of the main W--program must run from i=0 to i=m — 2. (m — 1 is the highest
index ). At the beginning the list is ordered up to this element i= 0. Therefore, the first element to
be inserted is the element i+ 1. In the iast variation we have i+ 1=m — 1, therefore ,i=m ~ 2. ¢
According to the rule, chapter 1, page 54 the corresponding variation is '
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P3.27
Wi(m-1)
Odl1 ( V) =R
mXo mXo
vV =12
A" o 0
S mX¢, mXa
Wi (m1) [Z. =
\" o
K itl
S g
" —
' ‘Wiez 0>
\"
K
S
A%
K
S
e = —1
v
K L In In’
Z = R o
Vio o
S mXo mXo

- 105 —
Z =1
o o
€ €tl

L O o
fz =12
1 o
e+l

Lo o

P3.28  As P3.27 , however the highest values first ,
“> " instead of “< ™.

od 2( V) =R

o (o)

Example for P3.27

Zo : ' Zl

i € 0 1 2 3
0] 0 {3 2 1 7 2
0| -1 3 3 1 7 2
1 1 2 3 1 7 1
1 0 2 3 3 7 1
1 -1} 2 2 3 7 1
2 2 1 23 7 7

1 2 3 7

-
e~ = ¢

Fin>

V=(3217)

(o]
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d) Programs for counting

N (V) = “number of elements of the list V”
] o

P3.29

(N(Ro)(V)=N(R(x€VARI(x))
[o]

Explicit form

. N

O0=¢ o ':“:
WI(N(V)) [Ra(V)> (etl =€) e= R

) o o
i Q‘\
P3.30 Number of elements that are different from each other
R(V )=R.
0 o 7
mXao 1n

N(X(x€ V))=R
o [o]

Explicit form

V=127 m =¢

A" 0 o 2

S mXo 0Xo| 1.n 1l.n
Wle*02>Z=Z |0=e |0=c¢

A 2 | o 2 o 1

K o

S l.n o o lm 1lnlln 1ln

\" 2 2 0 o
K i
S o g

Ze) =

MR e = € Z
A 20 o1l 2 ll
K =

W3(le)[Z=2Z> (e +1=¢€)

( eXo )

—ronrn

PN WS VI R 8

v
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e) Propositions on two lists

Marginal values for P3.32 to P3.36 !
R( VvV, V)=R | oty
A" o 1 0 ¢
S mXo nXo

P3.32 Identity of two lists

V= V=R .
Vio | o - . . ‘
S mXo mXo o ‘
Wim) [ V=V=AR
v 0o “l1 o /”*\'«j\\ '
K iic S :
o/ .
P3.33  Lists of the same composition ( see also page AOY) B
U™ _ s
VeV=R T / :
. . \\\ . ‘/‘ E
o} 1 o : T ‘
S | mXo mXe o ' i
Od 1 (V) =0d 1 (V) =R - | |
(o] 1, o ;
P3.34  “* At least one element is contained in both lists » ¢
Implicit form 14
(Ex )(x€VAxEV) =R F
o 1 0
. i
Explicit form ) ) T
W1 (m) [ Wi(n) Vri=Vri=VR
Vio 1 o l o o0 ' 1 o]

K

P3.35 For every element of the first list there exists an equal element in the second list ( sequence and
number of repetitions may be different , however ) . o !

Implicit form . - ¢

( x) [x€V4x€V=>RJ
' ) 1 o

In observation of the rules of chapter i, page  the following expression results :

] +=Z | WIm)|-=Z | Wi(n) [V i=VriVZ=>2]|Z{|Z2=2].
v 0 o 1|1 o.o 1'1 1 1jlof|ll of
K .

Z=R
o o
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4
This can be transformed according to the rule of chapter p, page f%mo the form :

W1l(n) V’—i=V'i=’VZ Z=NAR
(:()_J'O Jl I:I 1 o

P3.36 All_ elements -of the first list are also contained in the second list, and vice versa.

Wi(m)[ - = Z
\% 1

K.

Implicit fqrr@' :

Od 1 ( V) ®&OrdT(V)= R
0 1 o
respectively )
a\
R335 ( V,V) AR335(V,V)=R
ol 1o o

A

o

This expression can be simpfiﬁé;d-. B\)’g_ this will not be discussed here.

f) Propositions on two lists for which a relation R0 is true.

Marginal values for P3.40 to P3.44
(R(Ra ))(V ,V )=R

v o 1 o
S mXo  nXo o
P3.40 For every two elements of the same index the relation RO is true.

Supposition : m=n

( The lists can be projected on each other without a change of sequence of the elements ) .

Wil (m) Ro (V, V) =AR
A" v 0o 1 o
K i i

P3.41 “ The lists can be projected on each other by a change of the sequence of elements ™ .

R340 ( Ord 1(V), Ord 1 ( V))=>R
o [o) 1 o

P3.42 According to P3.34, P3.35, P3.36

P3.43 2 however, instead of the relation- “ =" the relation “Ra .

)

an .
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g ) Production of a new list from two given lists

P3.48  Horizontal composition of two lists with the same number of elements. The elements with the

Qz

P3.49 Composition '("?f ‘two lists, the elements of which are of the same structure.

P3.50 Horizontal composition with a constant

Q

same index are combined .

Qe (V ,V )=R
v .o 1 o
S mXe  mXr mX(o,7)
W1 () - (VV) =R
\% Lo 0 1 0
K ii i
S o7 (o,1)

Lz( Vv,
0
mXgo

Wi(m)

The operation symbol

v
1

nXg

V =
(o]
i
g

y =R
RN

N

R | W1l(n)
0
i

o

elements ( see page {Fr‘é .
i

Lz (V
oXo

, V

y s VO

oXo oXx

( Constant first ) 4

Q (V,
(o]
g
Wi(m)

A"
1
mX7

) =R
o
mX(o,7)

(v,v) =
o1

i

o7

(m+n)Xo

)

ag

R
0
i

(0.7)

V=R
1 ]
i m+i
0 0

8.

Lz may also be applied to more than two lists , respectively to single

B O N

‘\

i

N "
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Ny
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13
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Horizontal composition with a constant
( Constant second )

Q (Vv ,V )=R
o] 1 o v
mXo 7 mX(o,7)

Wi(m) [(V.V) =R

. o0-1 o
At o
i~ i~
0T (6,7

The operation symbol Qz is also applicable to several lists with an equal number of elements

L))
respectively single elements.

Q (V ,V .,V .,V
o 1 ~‘.~2‘,\: n

mXo, " mXo 1 'rﬁ?<02 mXgo

P3.52  Numbering of elements

*Nr

Ne(V ) =R

v ] o
S mXo mX(1.n,0)
Wi(m) (i, V) =R
v o o
K i i
S In o . (1.n,0)
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Examples for Lz, Qz and Nr

el T e

R I T S P

r g

V, = (13,24,01, 53)
vV, = (12,17)
v, =(03,13,12)
1z (V, V) = (13, 24,01, 53, 12, 17)
o.1 .
Lz (V. V) = (12,17, 13, 24, 01, 53)
e -
Lz (V, V, V) ="(13, 24,01, 53, 12, 17, 03, 13, 12) §
ol 2
’ i
.\}0 = (3,¢b,f)

vV, =(7,53,1)
N \

o l’\
v2 = (a9 3, 7!-6)

Qz(V,V) = (a7, c5, b3, f1)
ol :

Qz (V, V) = (a7, 85,73, 81)

. 21
Qz (V,V,V) = (a7, cf5, by3, £61)

o 21
V3 = a

Qz (V, V) = (aa, ac, ab, af)
3 0 v : *

Qz (V,V) = (aa, fa, 73, §a)
2 3

Nr(V) = (0a,lc,2b, 3
(o]

2) Free Calculus of Lists

( The results are lists of variable size )

P3.64 © R(XEVARS(x))=R
[o] [o]

. see chapter 1, page 70 ~¥2
P3.65 R(xEVAR(x))=R ~

o _ o
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P3.66 Partial list from i=o0 to i= V
T . !
TI¥1(V ,V ) =R —(VH)Xo
\" 0 1 o l 1
S mXoe la

Implicit form
§(xeVv . I(x)<V) =R
o . :“. '»1 \.o

Explicit form

Wi (V+l) V=R
1 .o .o
i i

3 oR<

67 Partial list from i="-'V'o i=m -1

P2 L

T—2(V ,V )=R (m -V )Xo
o 1 0 l 1
mXo 1.n : .

Implicit form

|

v <

x (( x €EVaAaI (x)>V)=>R_
o 1 0

Explicit form :

W3(Vm) V=R
1 o o
i i

3 =® <

.68 Evaluation of the number of identical elements

R(V )=R
0 -0
mXo oX(6,1.n)

Implicit form

o

A :
N 9(yEVAy
)

( x) X €R->x

= <
(o]

(o}

(x€V) =50 (R)

x)

.
3OTEEE v BRI, e Sk e B
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Explicit form
WI(N(Z)) [N(R(x€VAx=2Z)) =2 Q(Z,Z2)=R L a..
o ) o] 1 o1l o . s
K i i "
S OXo Lln ¢ mXeg o l.n ¢ ln 0X(o,1.n)
= Sp0 ( R) means : the list of the elements contained in V without repetitions .
o .. Mo- 0
Z = Spl (R) specifies how frequently the corresponding element is contained inV .
1 ) , o
Example : . - .V=(14,13,1,14,1,1,9,4)
. Y 0
= " \
R, = 14,2‘ RN
13,1 >
13 '
9,1
4,1
P3.69 Combination of the elements, which cohere through the relation R0 . The cohering elements
are each compiled to a group. These are numbered and supplemented by a group number.
R(V) =R
\Y% o o
S mXo 0X(o,ln) V

see P3.9 , page f]‘l. (/(U O) .

Meaning of the intermediate values :

Z_ List for compiling the group just investigated

Z, "Element which is just being tested for coherence with other elements
Z, List for compiling the result

Z3  Remainder list of the elements not yet assigned to groups

€ Group number

.
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P3.69
V. =2 |§=2Z
Vio 3 2
S | mXo oOXo X (o,1.n)
We [Z=2 j0=e
v 3 o
K ‘o . J
S g« OXo l.n
we [Z=12
v o 1
K . O ,
S .G o
Lz [Z ,X(x€EZAx€E€ZARI(ZXx)vRI(x2Z))
Y
v RN 3 0 1 , 1
S B OXo ' o ©OXg ¢ OXo oo oo
Lz( Z, Q@(Z ,e)=2Z el = ¢
\'d 2 o T2
S oX(o,1.n) oXe 1n - oX(oln) | In In
) R(x€ZAx€EZL )=1
A% 3 o 3
S L ¢ OXo o OXo oXo
Z = R
Viz2 0
S | oX(o,1,n) oX(o,1.n)
Example : V= (3’ S, 7, 159 4, 9) 16’ 57 3’ 3,)
o
Ro (xy) =lx-yl<2
R=1[ 30 Group0 = ( 3,5,4)
° 50 Groupl = ( 7,9) °
7,0 o
’ - 6
4,0 Group 2 ( 15,16)
15,1
16, 1

L. 912_

=7

'DXa

-

I

, .
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W
P3.70  Union of two lists A \
vV U V =R ' ' i a ‘
Vio 1 o *
S | mXo nXe  OXo ’ .
L (x€EVevxeEV) =R
o - 1 o
P3.71  Section of fw'o-list§ '
) ' h i
vV n V =R
Vio 1 o
S mXo nXgv  OXo :
R(xEVAxEV)=R E
o “\.1 y O : , : ! s
. ."‘\ .
Note : e g
In the calculus of lists the commutative law for the operations U and N is not true. There ,
fore , it is not generally true that : §
vV U v ="V U V ;
. o 1 1 , o
V n V = V n Vv '
1 0

0 1
. 3
The two cases differ in the sequence of the operands. The first list is competent for the sequence',

4
But it is generally true that A
V U V =% V U V M '
o 1 1 o ( see page AQH) =~
' ‘(.//]:9‘)
Example
V, =(1,3373215),V; =(1,556823) |
Vo, UV,=(1,372568), VU Vg =(1,56,823,7) !

vO nv1=(19392)5) ). vln Vo =(115’2,3)
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V. Programs with Lists of Pairs

( Calculus of Relations ) _
1) General , 3

In mathematical logic a relation represents a predicate with two variables, for instance” a <*b.-In
general representation , a relation may be represented by an operation symbol ( for instance *“ <** ),

or by a predicate symbol ( e.g. Verb (a,b )= a is connected to b ). )

In the special representation mainly three forms can be distinguished :
a) Graphic repres\éntation by an arrow-diagram

Example : « », '

L ARNEN

“Pole x 'is connected conduclively with pole 'y ”

-

W

Eiasie o

DR WP Y o

ESr Y

g

Since this relation is symmetrical, it is represented by antidirentional arrows. For the Set of velements
0,1, 2,3 the relation a< b has the following diagram

0. 1 - }
1
¢
2 3
b) Representation by a matrix : . ,
For the two examples of a) the matrices have the following form : !
1 2 3 4 5 6 7 8 9 10
A !
2+ + + +
3 + + +
4 + +
5 + o+ 0 1 2 .3
6 + + o+ 0+ 0 + + 4+
7 + + o+ o+ 1 + 4
8 | + + + o+ 2 + .
9 + + + 3
10 + ¥

The matrix of the symmetrical relation is symmetrical to the main diagonal.
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¢) Representation by a list of pairs .-

The pair list contains all pairs of elements for which the relation RO is true. For the two !
examples mentioned above the lists have the following form : e ) i
1 - 2 0o - 1 ’

2 - 1 o - 2 4
2 - -3 6 - 3

3, -2 1 - 2

3 =8 1 - 3

g — 3 - 2 - 3 '
8 - 9 ' ’
9 - 8

9 - 30 %

10 -9
2 - 7 . ;
L >’ \
7 - 2 R A ’
. , ™ .
7 - 8 O i
8 - 7 i
7 - 6 :
6 - 7 f
4 - 6 o
6 — 4 ;
4 - 5 .

5 - 4

t

Since the relation * conductively connected to ” is generally symmetrical ( if rectifiers are excluded )
then the duplicate listings can be replaced by the single ones following :

i
| G
2 - 3 *
.3 - 8
8 - 9
9 - 10
2 - 7
7 s |
7 - 6
s !
4 - 3

Representation by a list of pairs is best suited for computations. Consequently, the theory of lists
of pairs will be discussed first .

The general structure symbol for lists of pairs is S.4 -

S4=mX(a,7) _
. . i
The first element of a pair is called “ front element ™ the second ** back element ” . Generally , the
front -elements may be of another structure than the back elements. However , with symmgtrical '

T S R s
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relations o = 7 is true. The structure of the list then is m X 2¢ . Generally all programs for lists

can be applied to lists of pairs , wherein the elements of the list are identical with the pair . Asan

example the expression

vV &% V
VI]o 1
S 4 “ 4

states , that - g' and Y represent the same relation, possibly however, in a different sequence of

the members.  ~'-< 7

e

2) Propositions on lists of pairs ( see also section 5, page /1 'Z.Lf" YA "/ ;

R(CV ) 2R
\.‘ ..,‘\5
[} o ..

mX2Xg o

v
S

P4.1 Coherence of all pairs

( R39( R28))( V ) ®R
o o o o
mX2Xao 0

v <

/ |

a) Front elements and back elements are of the same structure Marginal values for P4.1 to P4.10

e

. .

*

To a list of pairs, for which R4.1 is true, an arrow diagram coherent in all elements exists , e.g.

- figures on page M6 e o
!
P4.2 The list contains symmetric pairs

(Ex)(x€V A x=x)= R
o o

o 1
20 oX20 0 0 o

v R <L

P4.3 The list contains pairs of pairs of which one is the mirror image of the other

Ex)(EY)(XEVAYEVAIRX)+ily)ax=yax=y)=R
o o : o
ol 1l o

~ <

Yy

Explicit form according to P3.4 , page 1% i (%t .’,@ [/
P4.4 * The list contains no repetitions and no mirror image ”
r
R3.2(V )AR3(V ) =R

Vo o ) 0 0
S o ax2o o oX 20 o

'
3 OOMI w B SORN ANE e T
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/V‘_/ S ;\)

P4.6 *“For each pair there exists a mirror image ( condition for symmetry ).

“ Each front or back element mentioned is listed as a pair with itseif”.

) [xeV~> [
A" o N v .
K ) N D
S 20 L20 mX2¢ )
/' Ey) [YEV A Ix) $Iy) Ax=yAx=y !
A% ¢ o
K | . o1 1 o
S 20 " 120 mX20 20 20 0 0 0 ¢
(see P3.7; page 97 Mo
P4.7 “ All front elements are different from all back elements .
X)) (XEVSIA yeEV +x%y)}=R "’
\' o T o o
K : : o0 1
S 20 20 L 20 mX20 ~Zo‘.n‘1X‘i‘o o o o
P4.8 General incoherence of the pairs
(R34 (R28))(V)=R
o o - o o
P49 Condition for reflexivity

v
S N T P L X B

O

b0 0 Y

Y,,. s el Te gy e e G

L T L a1
§

et

-

j

>
RN
b

& xeSpo(V )AXESpl(V }->(Ey) [YEVAY=XxAy=Xx]]=R
o o o o

o 1
o |0 mXo mX20 ¢ mXo mX20 2Xo 20 mX2es o @04 | ¢

R <

. P4.10  Condition for transitivity

)X XEV A XEV A x=x->EX) [ XEV A X=TXAX=X

Voloo-l‘o o 1 2 2 o o 2 1 2
K ' 1 o o o 1 1
S 20 20 26 mX2¢ 20 mX2c ¢ o 20 20 mX20 0 ¢ o0 O
b) Propositions on lists of pairs
Front and back elements of different structure
Marginal values for P4.12 to P4.15
R(V )>R ’
\' o o

S mX(o,7)0

-, Y

Nm
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P4.12  Coherence of all pairs

( R39( R22))( V) =R
0 ) - o° )

P4.13  All front elements are equal to each other

R3.1( Sp0 ( V))=R
\ 0. (V]

»
v .

P4.14  All back elements are equal*to each other
R3.1( Spl. ( V))=R

. 0. o)
“

3) Programs for ordering of lists of. pairs

T, ' -
Supposition : x < y_Is defiped for the structures of the pairs > elements
Marginal values for P4.24 to P4.27
R(V ) =R

v o 0
S mX(0,7) - mX(o,7)

e
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(see a/Lor P3.24 74 1/73)

P4.24 Ordenng of the pairs refermg to the front elements @s&tpagH

- Ord

P4.25

2
v
S

v <

R <

v R <

©v R

Ord3

Ord2(V ) =R
o o
mX(o,7)
\Y% =7
0 . 0
mX(o,r)  mX(o,7)
Witm-1) [ Z =Z |i=e
: ) ~ 1
itl
. (o,1) (o)1 ln 1n
"l wesoslz<Ziorz =2 Je -1
1 Q o 0
3 o eo e+l
) Py ¢ ¢ L (o) (o7)
Z<Z->[2Z =2 |Fin®
1 (o) 1 o
0 €.0 etl
Lo o L (g1 (o7
€ = -1 —>| Z = Z
1 ")
L ( In 1In (a;r) (o,7)
z = R -
o o
mX(o,7) mX(a,r)
Ordering referring to the back elements
Ord3(V ) =R
A"/ o o
S m(o,r) mX(o,r)
As P4.24 ; however,Z < Z instead of 2 < Z
1 o 1 o
1 el 1 €.0
T T

g g

=> €|

4

~ -
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P4.26 Ordering reffering to front and back elements. Front elements have preference however .

=122 ~

Ord 4 . Odd ( V ) ®R
v o
S mX(o,7) mX(o,7)
\Y% = Z
VI|o o
S | mX(o,r)  mX(o,7)
LN,
W1 (m-1) [ Z~-- =17, i =e

\% (o} 1
K itl
S (d,\,'r) (o) | 1n In |

We>0-o2<2z2 (Z=1
v g 1 o 1 o

M \
K . o €O 0o €0
S "¢ o o o
Z >{z =7
v 2 o o
K € etl
S. ) !‘ 0,7) (o,7)
@k& = Z

\Y% 2 1 o
K etl
S L L o {(o,7) (6,1

e= -1 » Z=1Z
v 1 o
K o
S | 1n ln o g

'z =R

V]o o
S mX(o,r) mX(o,7)

Z2<2) =27 7]
1 [} 2
1 el
T T )
e-1 = €
Fin3 "
! .

3 TRTR W N RSN RR TP WL e I e WV

P4.27 OrdS ( V) as P4.26. Here however , back elements have preference.
o

Ord 5 Alternative expression for Z

Vv
K
S

Z<Zv(Z=2ZA2<2)=1

1 0
1 el
T T

1
1
T

o
el
r

1
0
g

2

(o]
€-0

2

LSt g me
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P4.28 Ordering within the pairs

Ord 6 Od 6 ( V ) =R
A\ ) o]
S mX2Xa mX 20
W1 (m) ( RLLIO6 ( V ))=R
A" . .o o
K ., i i
sl > - 2 2Xo 2Xg,

4) Field, Front Area and Back Areca of a List of Pairs, respectively a Relation

Marginal values for P4.32 ; P4.33; P4.34

R(V ) =R
(o} \0 "“ "::\
S mX2Xo oXg T

P4.32 Field of a list of pairs

8 [x€Sp0 (V )vxe€Spl (V )| =R
A" 0 . o o
S o mXg mX20 (1] mXo mX20o oXo

F‘unction Symbol : Ca ( V) ( Ca me “0 b T )
o

i
(CompusT)™

P4.33  Front Area of a list of pairs

R(x€Sp0 (V))7=R
mXa Lo DXo'l/
Function Symbol Vb ( V)
o

A
S

P4.34 Back Area of a list of pairs

X rxe€spl (V) 1= R
A\ l: 0 } o
S o mXe mX2o oXg

. Function Symbol Nb ( V)
o

~ -

’
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5) Programs for Structures of Relations represented by Lists of Pairs

P4.49  Subprogram : Number of the connections of an element of a pair. -~ an
R(V , V) = R ‘

\" o 1 0

S mX2 ¢ In’
X x €V A x*x)|=1

A T S o

K o 1

S 20 mX20 o o 0X 20

\' o . i 0

K _ -0 1

S 20 OX2: a o o0 o0 - Lln
- . N

Marginal values for P4.41 ic' P4.45

R(V )=R
\' o 0
S mX20 o

P4.41 The relation consists of individual circleswith at least 3 elements.

R44( V )/\1(X) [xGCa(V)+R4.40(V ,x)=2:i=’R
' o]
o

) ) o o) o
o mX 20 o o oXo 1.n mX20 o 1n

P4.42 The relation consists of a single circle

R41(V )AaARM4t (V ) =R
o’ o o o 0
o mX20 0 mX20 o

<

S

P4.43 The relation consists of individual chains

R44 (V) A (x) [xECa(V)~ [R440(Vx)=1T] =R
o ) o I o

vR440 (Vx)=2 J
o o0
P4.44 The relation consists of a single chain.

R4.1(V)AR443(V)=R
o} 0 0o [o] o

e -
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P4.48  All elements are coherent :
( The arrow diagram is a coherent figure ) . y
(R3.9( R2L1))( V )y = R | .
Vi o 0 0 - o s 4
S ’ mX 20 o ‘
‘
Explicit form
vV =2 2
V| o o . . ,
K| o . o - : H
S| 2 OX 20 _ ' -
We 2 =2 |L[Z K, &[xev AX €EZ A R21(Z, x) =>g
\Y o R S ) 0 0 0 1
K 0 .. ' %
S L2 2wl Loxel 22Ll2 oX26 2 oX20 ¢ 2 2]
. R . . R ‘ *
(x)[xeV > xe€% = R :
A% o "o o :
sl 2 Lo oxe o ox2l o :
P4.49  Univocal coherence of all elements - ;
( one way principle ) :
R(V )=R )
\' (o] o F
S mX2 o :
X xE€EV->x4#x) . ¢
v o v '
K 0 b
S . 20 o o
Definition :
If the front and back elements of the pairs contained in V are called points, then'x and y of
o
V is true for any two different points. ’ ' !
o ‘

. . N .
B e i 2 A e e R A S

o N

NN

oX 20

There does exist just one list Z, the elements of which are points of V with the following prope!ty.

o
The first element of Z equals x
The last element of Z equals y.

All pairs composed of adjacent elements of Z are elements of V .
' o

In other words : for any two points X,y of V there exists a chain of pairs of points which

are elements of V. The first pair of the cham contains x and the last pair y, wherein the .

adjacent elements SF the chain are coherent. -

P
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"
The exact formulation of this statement is complicated. ) -
Another defintion is given preference: : "
Recursive defintion: . § ;
A single non-symmetrical pair is a univocally coherent list of pairs. By supplemenﬁh‘g a urivogally § '2
coherent list of pairs by a new non-symmetrical pair, another univocally coherent list is produ"ced, :
if just one and only one point of the new pair is equal to a point of the given list of pairs. In this ‘
way the following program is generated:
(1) The first pait of V forms the first stage of the growing list - Z.
... o . o \
Z, _‘is‘thé list of the remgining pairs of V , i.e. of those not contained in Z. 3
o o
(2) The list Zy is investigated for the next element, the front element or the back element
of which'js contained in the field of Z . If both are contained therein, then ambiguity existsl
W\ Qo )
and R must be negative. The investigation is then terminated. :
.. L t
The invéstigatioh: (2) has to be repeated as long as there are elements of Z; available which * -
fulfill the request for <oherence. i
. ; . £
(3 If Zl does not contain coherent elements, then incoherence exists and R must be ne’gative§
o
If finally Z; is empty then R is postive. }?
o .
The corresponding programs are as follows: ;
V=12 _ *
Vio o .
K | | f
o : .
S 20 0OX20
W[ ux[xeV Ax€Z A (Ey yECa(Z)A(y=;iVy=x) = Z t &
\% o 0 o \ y , 1 : =
K o 1
S 2¢ mX20 20 oX20 o oXgo o G0 O 20
Z=Z=/MR | Z=Z=Fin® | 1z[Z ,27 =2
\'% 1 1 o 1 1 o 1 o
K o 1 ] ‘
S L0 ¢ ol o ® o0X20 20 oX 20 ‘ \
N(Z)= N(V)= AR
\' o -0 (o}
S oX20 mX2g o

This program is very complicated for computation, since the remaining pairs have to be investigated
_for every new point of a coherent pair, and their front and back elements have to be compared to
all pairs already connected. This procedure can be avoided if out of the already connected points

(field of Z ) one point is occasionally selected and then the list of the remaining elements Vo
I

0 ,
is sear:hed for all elements which are coherent to that point.
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" ]
V=12
o} o} ?
o ’ . : . } i
2 oX% » L e 4 }
Wim(x€C (Z)=2|R(x€V A x€Z A (X2 v x=ZY) ='Z;
0 1 o ) 1 1 2%,
o 1 .o
00 oXo mXW o 2% mX® 2w X 06 oo oxo
(x)[x€CG (Z)->(E)(yE€EQ (Zlry*rZary=x)|>1 ;
[ 2 0 1 300
- o OXo - ¢ OXo 6 o0 0 ¢ o ¥ |
Z=AR|Z = Fn Lz( Z , Z ) = Z - :
3 o] 3 ' o 2 o g
0 o'l o 0Xw ~ OX OX20
N(Z)ﬁN('Y)T{AR , f '
0 ot ™o :
OX20 mX2, o !
In this program the expression for Z, and Z3 can be combined if an investigation is made as é

to whether the condition Z5 is true for this element immediately after the generation of a
new element Z,. :

e aa

V=127
o 0 LY
o .
20 OX20 . ’ t
Wux(x€C (Z )) =1 : 7 ¢
v ] « 1 ’ .
o oXo aXx2o o
_ - H
Wp'x [xEVAXEZA(Xx=Zvx =2Z)|=>1Z
o o 1 1 2
o 1
L 20 o g o o 20
Ex) [ x€C (Z)YAxFZAx=Zvx=12Z1=1 l
o 1 2 2 3
x !
La oXo . ] o o g o 0 o
Z=AR| Z= Fin® Lle(Z ,Z )=2
3 o 3 o 2 o
. Lo 0 o] 0X20 0OX2 oX 20 ml
N(Z )=N(V )=AR
0 o o

0oXx2e mX 20

y ¢ A e

e

~

mm
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This program can also be simplified. It is not necessary to extend the variation of x in the ex-
pression for Z3 over the whole area of the field of Z,; it is sufficient to do so only for those
points for which the coherent pairs have not yet been connected. y
Now, an auxiliary value Z, is introduced. This is equal to the list of the already"c‘onnet‘te'd.poinq,
but it has not yet been investigated for coherence. So the final form of P4.49 is developed.

P4.49

Sl T e e A

‘*m"

T it P s

VI|o o .| o 4. - i
K 0 0.0
S 20 0OX201 @ oXo t
Wﬂhx(xEZ‘t ) = Z 2
v 4 1, . ;
S ¢ OXo .o‘-‘ _ H
Ll N . .
W'p'xeev‘A XE€Z. A (x=2Zvx =2)7 =Z" :
\" o "o ) 1 1 2 :
K o 1 é
S 120 mX20 ¢ OX20 G 06 ¢ ¢ 26 -
X [X€EZAax+Z7=2 E
Vv 2 1 5 .
S o Lo 20 0 o o
( Ex ) XEZ A x=12) =7 F
A% ' 4 5
S o c oXo o 0. F
. [ 4
Z=AR| Z=Fin°| Lz(Z ,2)=12 %
\" 3 o 3 0 2 0
X S o o o} OX20 20 oXx 2o
o :
Lz( Z , Z) = 1
Vv 4 5 4
S L L oXe o oXo _ !
N( Z ) =N(V ) =R !
v o o 0.
S oX 2o mX 20 .0

| V=2 =2

B L T Y T Yo

e —
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P4.49

n <

Legend of the Intermediate Values :

Z, Compiling list of the connected pairs | T
Z, Point just investigated for coherence

Z,  Pair to be newly connected |

Z3 o The new point ( Zs ) is univocally connected ”

Z, Lxst of cohnected points not yet mvestxgated for coherence.

Z5 Newly connected point.

In this program another auxiliary value ZS is mtroduced which is equal to the newly

-connected point ( “that point of the newly connected pair Z, which is not equal to Z,).
Then the expresswn for Za becomes especially simple. Instead of x € Ca ( Z )ax # Z

-

.y \
it reads : x € % , since’ % in the partial list of Ca ( Z) with those elements, for which
: 0

the investigation is only relevant. Because of the u - rule , Z, is no longer contained in Z,-

4
so that the expression x+ Z can be omitted.

1
Furthermore, the expression
x=2Zvx=12
2 2
1
can be substituted by : x = Z-
5

The connected point Zs has to be added to the list Z, in each evaluation.

P4.50 Combination of coherent elements in proups.

R(V ) =R ( R369(R21)) (V) =R
o 0 0 o o o
mX 20 mX(20,1.n)

‘
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Investigation for univocal coherence and ordering into coherent groups. Merger of programs
P4.49 and P4.50 . In addition, production of a list of the degree of determigation .of the
groups. ‘ X ‘“
R(V )=(RR , R )
o ol 2

mX 20 o mX(20,1.n) 0X2X1.n

Suppdsition ; no symmetrical pairs ( the same , as with P4.49 ) . ~

~e

Legend of the results :

R, “ The list of pairs is univocally coherent ™ .

a\

o

Ry List of ‘pairs-ordered according to their coherence with the numbers of the group.

R,  List of the dégree of determination of the groups with group numbers.

LM
R Number of group , R-= Degree of determination.
2 2
o ' 1

For a group univocally coherent in itself, the degree of determination is 1. Each duplicate

vy

P

3 WM S T RN AR e e P

pair and each pair redundant with regard to coherence increases the degree of determination t

€ by 1. .
Example : ¢
3 :
1 -2 e =1 ,
2 -3 . 2 2 Of _t
2 —4 ' : : '
2 -5 ) l. H
1-2 e=2 3
2 -3 1 2
2 -4 , ‘
3 -4 ' 4‘ l
!
1 -2 e = 4
3 -4
- 2=3 .
2 -4 .//
3 -4
4 -5
5 -2 |

O T S W odr N @ wes 0

Sphe i g w e Ay,
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2 [
b ‘

P4.51 is developed out of P4.49 ( see page/ )5 ). The ivestigation, in P4.49 applied to the entire
list of pairs, concerns a single group only in P4.51. Therefore , a main W — program is required
to investigate the various groups step by step. ) ' \

Here the entire list })’ is replaced by the remainder list Zl.O’ which represents the fist of the ,Paixs i

4
the beginning. Z ; represents only the compiling list of the just investigated group. Therefore, another

compiling list Z, is required for the production of R (list of the sorted pairs ). After completion
- . 1

“of a g'rblip;\'thg pair list of the last group Z, is supplemented by the group number ¢ . .

X
:
i
\
1
of X not yet connected after cémpletion of a group. Consequently, Z;q must be equal to X at i ¥
*
?
¥
A
¥
x
4

L : -
Until the evaluation of Z3 everything proceeds analogous to P4.49. In the case of Z3 , ¢
must be increased by 1, since it is then a redundant pair with regard to coherence .
Ta 4
After completion of a group, in addition to the evaluation of Z,, the nextelement R, which

is composed of the two €— values has to be generated.
_ - \

"
-y

.

- * .‘ ‘-.\ " .
The condition for R, (R ( . ) ) standing at the end of P4.49 is replaced by the condition that
intheend €y = 1, if §'is positive, i.e. of V consists only of one single coherent group.

3T e W BEWN ANE TP O

Examples for P4.51

Vo R, R, R, Coordinated diagram of

i
v
'

relations

1 -2 + 1-2,0 0, 1 '
2 -3 2-3,0

2 -4 2-4,0

4 -5 4 —5.,0

4 -6 4 -6, 0

1 -2 - 1-2,0 0,1
5 —7 5 -7, 1 1, 2
5 -6 5-6, 1

6 — 7 6 -7, 1

1 -2 - 1-2,0 0, 3
2 -3 1-3,0 1,
1 -3 0-1,0 2,1
3 -4 2-3,0

2 -3 2-3,0

20 -21 0-4,0

0 -1 3-4,0

0 —4 . 20 -21., 1

22 =21 S22 =21, 1

10 — 9 10 -9, 2

8 -~ 9 8 -9, 2

5 -6 6 -8, 2

7 -6 5 -6, 2

6 — 8 7 -6, 2
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An important application of P4.49 and P4.51 is the folld&ing problem :

Measurement on an axis :

'
Example : .
(R ? N A fo
., L
.‘ ~ oo ,
AV . T

-y

List of dimensions :

W 4

e

“ .\
. 1

. N\,
. N . . .
* <.In this example the measurement is a univocal one .

-

F N U S
N bW

Another example : telephone networks .

If they are univocal then only one connection is possible between any pair of subscribers

prsewe

P4,52 Extension of P4.51

N [ ]
General analyses of a random list of pairs in regard to coherence. Symmetrical pairs are to

be extracted separately. Further, the multiple pairs and the mirrored pairs are specially selectet‘, '

Marginal Values .

R(V)=[TR, R , R ., R, R, R, R '

\% 0 o 1 2 3 4 5 6 A
S 4 o 0OX(2,9) oX 2X9 o 4 o oOX(29)

Legend of the structure symbols :

‘So = Yes—No-Value

S, = 2Xo pair of data ' i

S3 = OXo list | !_

S4 = OX20 list of pairs

7]
O
1]

positive integer number

g el R I e Tk AL A

?
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Meaning of the result values :

The list of pairs V) is univocally coherent,

List of pairs ordered by groups, and supplemented by a group number. "".
List of the groups and of their degrees of determination.

“ The list contains symmetrical pairs » .
"Li,s't'_ 6‘f-,\t‘he symmetrical pairs.

The list c‘ont:;ins‘ pairs‘,. which are equal to »another pair or to the mirror image of it.

List of pairs according Ry .

@ ‘

Legend of the intermediate values :

Q v N

Z  List of remainders of V,, after completion of a group ]
o . N ."":\é‘ )
4 .
Z  Compiling list of the group just being developed
1
4
Z  List of the points already connected to Zs
2
3
Z  List of the already connected points of the just evaluated group
3 -
3
Z  Last newly connected pair
4
2
Point, the connections of which are just being investigated for coherence
Z  Last point connected to Zg via Z,
6
(1§
Z  Criterion for * multiple pair
2
o

Criterion for ambiguous coherence

o 0 N

l
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- P4.52

v R

~

Z  Compiling list of the result R,
10 !
aX(2,9) - ~- i
€ Group—number ‘
0 ‘
9
€ . Degree of determination of the just evaluated group
1 -‘ " :k . )
9- A ) - '
®V =7 0= Z ®o=> € :
o o |- . 10 _ 0 . ;
4 4 bt 0X(20,9) 9 :
® © ® ?
we [ Z=> 7 1= ¢ 0= Z ;;7
o 3 1 1 e
0.0 ;
o 3 : 9 4
W@px(xe z)= zo=z -F
3 5 2 !
3, 0 3 F
l;t
® St
W[ uk[XE€E Z AXE ZA(x= Zvx =2)]=2Z | &
o 1 5 5 4
° !
2 4 2 4 o o o o 2 !
z=z‘:> +=>VR| Z=yR| Fin? !
4 4 314 4
o 1
o o 0 2 4
®x’ XE€EZAxtZ]>Z
4 5] 6
o a 2 o. !
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RS
RN, RPN
%

N
(Ex)[x€Zax=2 = Z | Zv(Ex)[x€Zax=2]»2z |} |
2 6 7|7 36 0~-8 |
¢ 36 0 o 306 ol o 3
Y
‘1
Z>[+ > R|(Ze)=pu R Z»lz(z2)=> 2z
z 5| 40 6 7 26 2 53
. o o 29 0X(2,9) o 3¢ 3. :’
. il
© @ @ !
_ Z > (et1=¢) Z=/AR Zo (Lz( Z,2) = Z t !
h 8 1 1 8 o 8 36 3 ¢
: o 95 9 0 '_ 36 3 -
Lo .-k
"‘,..x. f
Y Tr(Z2,2) =2 :
1 4 1 :
L 4 2 4 ;..u
(e,e):=> R Lz yA , @(Z, o>z ;
o1 2 10 1o] 10 .
9 g 4 0X(2,9) 49 oX(2,9)
@\ - B t
{ Q(xe ZAx€eZ) =12 etl = ¢ : ;
e o 1 0 0 0 . ! i
a 2 4 4 4 9 9 }fj ;
@( €e=1 )= R Z =R
1 o 10 1
9 o CooX(2,9)  oX(2,9) [

Formulation of P4.52 in words :

o
The list Z, is empty at the start

€. is zero at the start

(v}

The given input of pair V represents the first stage of the list Z .

o]

WEOEE

The first point of the first pair of Z, results in Z3 . If Z, is empty , then go t ’

Set El =1
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Set Z; =¢ (empty list). In the beginning Z, is empty. In case of repetitions the
hitherto formed elements of Z; must be cancelled.

The next not yet considered element of the list Z3 result in Zs.
If no such element exists, then go to@ A

3

Set Z, =¢ (empty list).

Select out of the set of pairs the next pair contained in Z_, but not contained in Z;,

in which one element is equal to Zsg. This results in Z,. If no such element exists then

L go\io@

. If the Tront element of Z, is equal to the back element, then set R positive Add 2‘,
to the list /’IZ (if this is still empty, then Z, represents the first = element). Go to (9

Thag element of the pair Z4 which is not equal to Zy, results in Z6'

o .
If an element which is equal to Z6 exists in the list 22, then Z7 becomes positive;
otherwise it is negative.

.

.. \ N §
If an element equal to Z6 exists in the list Z3, then 28 becomes positive; otherwise
it is negative. )

If Z, is positive, then
Rg becomes positive
and Z, supplemented by e, results in the next element of Rg.

If Z—, is negative, then add Zg to the list Z,

If Zg is positive then increase e; by 1

It is a necessary condition for R, that Zg is negative
If Zg is negative, then add Zg to the list Z5.

Add Z4 to the list Zl
Go back to@

The pair of values €, €; results in the next element of R,
Supplement the elements of the list Z; by e, and add the)(;o the list Z;4
The remaining list of Z,, without the elements contained in Z;, 1/_ the new list Z0

Increase ¢, by 1
Go back to 4

It is a necessary condition for R, that €; isequalto I.

ZlO results in Rl

]

il
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Lists of input — and result —values :

e

[ 0-1
6—7
3-3
1-2
5-6
7-6

34 | -
141>
L 1-3- | -

)

.7-6,1

Explanation of the results :

0-1,0]
1-2,0
14,0
1-3,0
3—40
67,1
5-6,1

L 7-6,1

The list of pairs is not univocally coherent ( R, )

The list consists of the following coherent groups ( 'Rl )

Group 0 :[0-1

1-3
34

Group 0 and Group 1 are of the degree of determination 2 ( R, ) .

Group 1 :\:6-—7

5—6
7-6

A symmetrical pair ( Ry ) exists there, namely 3-3 .

A duplicate pair ( R4 ) exists there, namely 7-6 ( R¢ ) .
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Appendix to chépters 1 and 2

1) Legend of the letters

N

Type of data e
Limitation —Symbol
Constant

. Q.\
Existance Operator

Function—Symbols, General |, ——s—m—"""""

N
.~ N,
‘“r

S
Index -
Index
Component
List—Symbol

Number of Components of Data

Number of Elements of a List - - —
Program —Symbol S

Result — Value . .

Structure '

Type of Data

Subprogram

Variable

Repetitive Program

Bound Variables, also General Variables

IV e

X
’
o

65
=4
4
%

.
I OONTE W B REL AR TR P P

~preres

b, 106CAGY J

50
57

4,
o
53
50
62,
44

y

Z Intermediate Value 5t

a Symbol for Variable Types of Data o “;Z
€ Currently Varying Auxiliary Value of a Program ‘

K Variable Index for Components . “57

X The last " (i

“ The Next "

13

R P RS T e

e e R Mt T 2R S Ra e

e
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Variable Program Symbol
Variable Structure Symbol
Product
Sum
ML 2 ) Legend of the Symbols
General Symbol for Vacant Position
Disjunction ] In the sense of
(1} ’
Conjunction . - . b the calculus of
Negation : . ' propositions
v A
Implication VLN
Disvalence
Equivalence J

Conditional Program—Symbol —

multiple operations for chains of propositions.

Addition
Subtraction In the sense of
Multiplication - arithmetics
Division
Squarerbot
Equal-Symbol
Identity—Symbol
“ Results in ” Symbol e

P

Same composition
Definition Symbol
Less than

Greater than

Less or equal

Greater or Equal
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5
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Indifference

Symbol for a Set of Programs
Empty List

Variable Operation Symbol
“ Is Element of ”

Union of sets*

Sectionap.f ‘§e\t\$ }
Disjunctior'i Elexent of -
Conjunction Element of
Brackets Z

Symbol for Separation of Expressions

Symbol for Separation' of Components ... =~ -
- nampone

Shifting of Lines

ts

A4~ .

S
68

L

-

s A

#f

¢t

»
3 T Y T EOES ARE R wIE P

-

.,

R R i T

RPN

T e Bt Pt

Xt

R Those Which ( without repetition ) (/e
& Those Which ( with repetition ) " -
£ That one Which 4@ -
- Statement Symbol el A
o General Negation gk ! 1
A General Conjunction 84 v Y]

o &3k
v General Disjunction - .

3 ) Legend of Generally Valid Function Symbols
Ca Field of a Relation ( List of Pairs ) e o /’2/37 l’ 1
Fin  End-Symbol ' e
o . - A53
Fpos  Positive Value of a Function V ) 45 ) —
Ger Even Number o _
Gz Integer Numb A ; :’
z nteger Number —

1z Concatenation of Lists etc. - /ﬂ)}?/
Maj The Greater One . . J3 J qg
Max  The Greatest .. - - ' : A0
Min  The Lesser One, the Smallest E C[% /4’09
Nb Back Area of a Relation ' 13
Nr Numbering of the Elements of a List 41@
Ord 0 Ordering of a Pair . o ' A ) C?

Ord 1 Ordering of a List e - oo 40&{

e

-

S daied

-



YEE
A5
2

9

53
452
01

N

&7
/
127

Ord 2
Pos
Pz

Qz

Rz
Sign
Sp
T
Ti2 }
Ub
Vb

So

to Ord 6 Ordering of a List of Pairs
Positive

Subprogram

Horizontal Composition

Result of a Subprogram

Sign of a Number

Column .of a I{st of Pairs

>

Y. -

Partial List
Transfer

Front Area of a* Relation

21..) Legend of General Structure Symbols

S N
Yes—No—Value S

_ Sl.n=nXSo  Series of n Yes ~No—Values

§2=2Xo

Pair of Data

S3=mXo List

=mX 20 List of Pairs

A8
A9
Al0
Al2
Al3

| ==

General Notation for Numbers )
Positive Integer Number - » Chapter
Integer Number *

Rational Number

Complex Number

7
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49 14 O,
53 —
A53 —

5 ) Order of Priority of the Symbols in Compliance with their Range

'
~ > A v =+ X
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€

—>  stronger binding
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Chaptes 3

Programs for Arithmetic Operations

Content

I. Structures and Types of Numbers

I1. Introduction

Survey of Programg with Numbers
lv) bPropositions on Numbers P8.0 to P84

2) Operations with One Operand
' - P8.8 to P3.30 ’

' 3) Propositions on Pairs of Numbers
@) a : . P84S 10 P8.50
4) Operations with Two bp'éran"&}__

P8.64 to P8.80

HI. Programs with.Positive Integer Binary Numbers
(A9.2)

1) Propositions on Single Numbers
P9.2 to P9.4

2) Operations with One Operand :
P9.8 to P9.30

3) Propositions on Pairs of Numbers

S T

P9.80, P9.48 to P9.50 . - ..

4) Operations with Two Operands
o P9.64 to P9.72

IV. Programs with Positive and Negative Integer Binary Numbers

kepresentation by Complement ( A10.2.0 )
P10.0 - P10.72

V. Operations with Positive Integer Decimal Numbers

1) Structure of the Numbers
2) Operations with Decimal Numbers R

VI. The Semi—Logarithmic Representation

JN—

(e.g. in the computer 24 )

' 1) Structure of the I\{umbeﬁ
2) Operations with AAl
( Omitted in the English Version )

SR T U
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L. Structures and Types of Numbers

The structures and types of numbers in arithmetic operatioris are of a great variety. Withott - .
considering their representation in detail , the following types of numbers can be distinguished *
form the start :

1) Scalars
a) Infegqr positive Number ( natural number )
b) integef‘ pc;si;iv‘e“cir negative number
¢) rational positive number
d) rational positive or negative number

The investigatiou, of irrational numbers is superfluous, since no structure allows them to be
exactly. They must always be approximated by rational numbers.

2) Composite Values : - i .. .-
1Y

a) Complex numbers * S S
b) Vectors

All these types of numbers can be represented in very different ways. For instance, the following
number systems can be distinguished : ’

1) Homogenuous number systems , e.g. :
a) Binary system
b) Decimal system

2) Non—homogeneous systems , e.g.
a) Division of the circle into grades, minutes , and seconds
b) Division of the time into hours, minutes , and seconds
c) British measurement of distances ( mile, yard, inch. )
d) Monetary systems ( standards ) , e.g. the British system.

Further, after the type of numbers and the number system are established, different ways of
representation can be applied.

1) The identification of positive and negative numbers can be accomplished
a) by signs
b) by complement representation

2) To specify the order of magnitude , power factors can be added to numbers ( half—logarithmic
representation )

3) Representation by logarithms
4) Representation by fractions (i— )

Finally, numbers may be supplemented by special data which specify those cases, which cannot
be represented by the normal representation of the number e.g. '

~~n

e
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”

1) Specification of *“ e ™ or * very gfcat ”

2) Specification of ** exactly zero ™ (in half — logarithmic and logarithmic representation )

T 4 .

3) Specification of * indeterminate
( see chapter IV )

Out of this multitude of posmbxlmes types of numbers of general -and of special meaning can be
developed.

Of general 'mgmiqg are e.g. the basic types of numbers ( positive integer numbers ete. )’

Of special importartce -are_, e.g. the numbers for the division of the circle, or monetary systems.
Amounts  in Mark—currency for instance are represented by decimal numbers, with two. digits

after the point. Of further special importance are the number—systems in a special computer ( e.g.
in the Z4 ). ‘

) P

Fxrst only programs for- number—systems of general importance are developed

The following types of d‘:ﬁq.ara:\‘deﬁned :
. N PP ¥

A8 Number in the gené'ral meaning

A9 Positive integer number

A10  Positive or negative integer number
All Rational positive number

Al12  Rational positive or negative number
Al3 Complex number

I OONIL W AN AR, R PN P

These general symbols may be substituted in different representations by various structure symbols,
e.g. those for decimal numbers, or for binary numbers.

It is not possible , however, to mention all possible strucigres, because of their multitude ( the set
of possible number—systems is infinite ) .

Consequently, at any time , only the immediately required strucutres are specially defined. The
followmg special forms of the types of numbers listed above are established :

A9.2 Positive mteger binary number ' I R —

A9.10 Positive integer decimal number

Al0.2 Integer positive or negative binary number ( kind of specification of negative numbers
not fixed ) ’

Al10.2.0 As A10.2 , but by complement in representation

A10;2.41_ o As Al10.2. but representation with algn Aoer ,‘M_,a// W

A A0

AlO.l‘O(j 1 IMA ot e T

|
f According to A10.2.0 , A10.2.1 5 s a
Al0.10

. ANV VY —s z s ! ’/ ' i y . L , N
N : <
L] .

N .

3

S T gy e =

R B R T I AT PR

AP S PR TP T ey PO

et

e Aasi .

e nd




1L

- 149

&f//u\/%va/x- ()/-‘/ 5 //(/,L_..g /\ u/u’) .

A9.2 =  Sln’
A9.10 = nXS1.4 ( the single decimal digits are represented by S.1.4).
A1020° = Sln , _ s L
A10.2.1° =  (8So,Slan) Ko = sign
K1 = number
A10.100 "=  nXS14

RN

A10.10.1 = ( So, A8.10)

All.2 = (Slm, Sl.n) Ko = series of digits before the point
. Kl = series of digits after the point
All.10 :—— -( mXS1.4, nXS14 ) Ko, Ki, according to A10.2
A12.2.0 = ‘(“81.&3; Si.n ) 7
A1221 = (So A102) |
Al12.10.0 =  (mXSl4, nXS1.4 ) '
A12.10.1 = ( So, A10.10)
Al3 = 2XA12

Other structures are defined ,when required.

Introduction

As manifold as the types of numbers and their representation, are the programs with numbers.

Programs with numbers mostly correspond to arithmetic operations. With nearly all types of

——

.
3 TR R SO, aBe T WEA B

-

b

numbers analog operations are possible , ¢.g. addition. Therfore, the well—known operation—symbols-

of arithmetics will be used here, too. They represent the symbols of a set of analog programs.
The program for addition for instance is different, depeding on the structure of the operands.
The special program is a function of this structure. So generally, the operation—symbol suffices.

But a symbol for the program—set is assigned to each operation—symbol. If necessary, the

specification of a special program -of the set can be achieved by supplementary data or indices,
which normally correspond to the structure—symbol.

Nevertheless, various programs are feasible for the same structure, ( e.g. those with or without
indication of an overflow ) .

Various programs may be equivalent or quasi-equivalent Even if the structure of the operands is

the same, in various cases still, different methods of multiplication are possible ( e.g. first or
second factor can be used as multiplicator ) . If the results are exactly the same with all these
variations of the input data, then the programs are equivalent. If they differ slightly in accuracy

Y Y R g Nk

W

o pam W

gt N I g M A

.

u‘;i.f*
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then they are quasi—equivalent. In the latter case it can be assumed that these differences approach

zero when the number of digits increase . H

-

The complete program for an operation sometimes contains supplementary information, cg the . {
identication of an overflow, besides the computation of the proper result ( e.g. the sum ) In such cases
the specification of the values must be performed by program—symbols or result —symbols ( for 4

instance R8.10 ) .-~

The real’arithxlne;'&cj' operations only represent in this case a reduced part of the total program. Such
reductions are ‘al3o passible with regard to the number of the digits of the result, for instance . !

In the following section programs of homogeneous structure are developed. In those programs only
data or numbers of the same structure appear. Nevertheless , the results can be propositions ( for
instance : a > b )y T,

v

The following grolup-s are“distinguished :‘ ' %
1) Propositions on single Iiurpbe(s H
2) Operations with single num'b'e;;-- - 3
3) Propositions on pairs of numbers t
4) Operations with pairs of numbers F
5) Operations with sets of numbers ) ;

This grouping does not correspond to a systematic logical development of one operation into another,
In some programs other groupings are used , which are defined only later.

First, we refrain from an axiomatic representation here. The well—known systems of axioms like
those of Peano represent implicit solutions of numbers and their operations, which may be realized
by different structures and programs. In order to develop the rules of special number—systems form F
those general axicms. the introduction of additional axioms would be necessary. !

The numbering of the programs is generally related to the group 8, ( e.g. P83 ) . The figure 8
can be replaced by the numbers 8, 10, 11, 12, 13 on the types of the numbers used.

P S VT
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L]
Survey of the programs with numbers
!
1) Propositions on numbers .
y 4 . 4
Program . Operation Marginal Remarks Paée
identification symbol values ‘
P80 Pos (V) R{V ) = R V0 is positive or equal to zero
i ~oe o 0 .
M . 8 o ;
P81 Gz (V) S V., is an integer number
a0
8- .
)
— 3
* \
P8.2 Ger (V) . N “ .V, is an even number 4
0 ’ yixa
8
L
P83 V=0 “ ;
° 155
8
P84 ' * .V, is an integer power of 2 t
_ /5,5”
i

Instead of the program—symbol P8.0 we have beginning with page 455 the special program—symboly:
Poo : .

et/ Y Dk R ettt @ mir o Ve

- ey e e
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2) Operations with One Opcrand

Program
identification

pg.g i

> <

P8.9

<

>

P8.10

P8.11

P8.12

P8.13

P8.16

P8.17

P8.18

P8.19

Operafion
symbol
V+1=R
o 0
8 8

Vel=R
o . o
8 8
VX 2=R
o % o
8 8
v x L =R
2
0 o
8 8
VX 10= R
0 o
8 8
vxlsgr
o 1 0
8 8
vZ =R
o o
8 8
1: V=R

o o
8 8
3/ vV =R
o 0
8 8
v =R
o o

8

Marginal
values

R( V)® ( RR)
o o1l
8 8 o

(13

119

&6

(13

%

“

Remarks

R = signal

1 * end—carry—over ”

[13

<€

“

129

(13

113

(13

(1

%55
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Program
identification

'P8.22

v
A

P8.23

P8.24

P8.26

P8.27

P8.28

P8.29

P8.30

Operation
symbol

VX(-1)=R

[o]
8
[ VI
[o]
: 8
sign (V)
(o)
8

)

Fpos( V) =R

(o]

[N

8

LN

3

N,

L]

(o]

>.8

- 153 -

4t

(19

“

[

' Marginal
values
R(V)=R
o o
8 8

Re marks

Inversion of sign

Absolute va]ﬁe

V20->R=+]

V<0->R= -1

V=0~

V<0 =

JIncrease of number of digits

Conversion to even number
of digits

Formation of the next lower
integer number

Formation of the next greater
integer number

Formation of the next even
number

|

—~——n

E

x.:{n-\. TSN ARE ok PTE B

\

-
1)
i

-,

PRI Rl N kA

B YT 2T

S

et

. danie
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3) Propositions on pairs of numbers

Program
identification

P8.48

P8.50
\Y/

Operation
symbol

© o <-
© - <

4) Operations with two operands

P8.64

A
'

A.-...'\'X

V+ V=>R"-.

o 1 o '

8 8 8

V-V=

0 1 0

8 8 8

V-V=R

1 0 0

8 8 8

XV=

o 1 o

8 8 8

V: V=R

o 1 o

8 8 8

Maj ( V,V)= R
ol o
8 8 8

Min ( V,V) =R

ol o
'8 8
Vx BY =R
[+

- 154

Marginal
values

R( V,V)
ol
8 8

“"

o

R(VV)
ol
8 8

3

[13

R(V,V)
o1l
8 8

“©

R(V,V)
ol
8 8

= R
o
o

=( RR)
ol
8 o

=R

Remarks

T :q,-}$”4‘9

R signal :

increase of digit position

Ry “result less than
zero

¢

R;= signal
increase of digit

positions _

The greater of two
values

The lesser of two
values

B = Base of the number—
system

“
Page.;i ;
!
Y
5
§
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I
Iy
158
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III. Programs with Positive Integer Binary Numbers ( A9.2 )
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1) Propositions on simple numbers

R{(V)=R
A\ o 0
S I.n 0

P9.2 even pumber -

A92 | V=R -

" Vio 0
K o
S o] o
P93 V =
A9.2 o v
SonS

P94  integer power of 2

2) Operations with one.Operand

P9.8 Counting forward

AQ(V) =R

RI9( V) =R "
(o]

(o]
0o

o
ln

o
1.n

(o]
o

o

A9.2 R = signal ,, increase of digit positions *
1 _

\" 0
S 1.n
+ = Z
V| ]
K
S o
Z =R
V]o o
K nt+l
S

R(V)=(R

o
1.ntl

Wi (. n)

Z =R

o 1

() o

» R)

1
o

Vo2 | 2[+Z=>R| ZAZ=2Z

o
i
o

1} 071 o
i
ol o o o

0

1

(o]

ou

P

I OTINER TN R PEEN ANE 8 R P

hniae ol

—
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P T A A

S g g N g Y P W

R
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P9.9. Counting backward

Implicit representation

”

A9.2 R = signal ,, change of sign ™ .

1
R(V)=(R, R)
\Y 0 o 1
S ln . 1n o
-=>Z.W_l\f'(n) V=Z|2Z~Z=R|ZvZI=1
A% ol " Lo o 1|90 1" oflo 1 o
K 'l N i
S 0 ' o olo o olo o o
Z=R a
Vio 1
Sio o
) A
P9.10 Dublication . * *'.,™
A9.10  (Marginal values and ° R as for P9.8)
1
-= R | WL (n) V=R vV =R
\" W) 0 o 0 1
K 0 i itl n—-1
S o o 0 (o] 0
Pa.11 Bisection ,
A9.2 ( Mariginal values as for P9.9 )
R = signal ,, remainder >
S '
—=R | W& (nl ) V=(R V=R
\Y o o o o 1
K n-1 i i—-1 o
St o 0 o o o
P9.12 X 10
A92 | R(V)=R , R)
v 0 o 1
S ln l.n+4 o

4

~

f
3TN YR B SN RAr B K P

—~—

I

P W el T S Pt g e

St W g e A

KW

JUNERN

IRy T

(VX2X2+V)X2=R
(o] [¢] (o]

R = sign ,, increase of digit position ”
-1



[Frew—

R

gy -

e T e N et

BT L ek

A

™
ROIO (V) =(Z ,Z)| Z=VR
Vio 0 0 i 1
S ~ ln’ 1.n¥1 o | o o
R9.10 ( Z y=(Z ,Z)| Z=VR Ty
Vi|o o o ' 1 1 1
S 1.n+1 1.n+2 o o o
ROG4 (Z  ,(V ,—)) =(2 ,2)
v 9 0. . "0
S Tt las2 ) 1.n+2 1.nt3 o
Z=VR| RLIO (Z ) =(R , Z) Z=>VR
v 1 1 . o o o 1 1
S o ol 1.n+3 1.n¥4 o o o
P9.16 v =R .. _
A9.2 o - 0o "‘. \ )
) R .."1‘\
R(V)=R., R)
A"/ (] 1 1
S ln 1.m 0

R = signal ,, increase of digit position ” ,
l K

B L SRR AL TR A s

pppr

-

R967 (V , V)Y=(R , R)
\" o o 0 1
A 9.2 9.2 9.2 o

P9.18 Squarefoot

The development of this program is omitted in the English version of the Plankalkuel. -

See German version .

P9.26 Extension of the number of digits

A9.2 R(V)=R
\"A 0 o
S ‘1n l.n+1

—= R |Wl (n) V=R

A" o ") o

K n+l i i

S o 0 0
Example : V, = LL
R0 = OLL

The value of the number is not changed.

o Sl



3) Propositions on pairs of numbers

In all programs with two or more numbers as input — values it is presupposed that the number of
digits is the same with all numbers. If this is not the case, then the number with the smaller ntmber
of digits must be transformed to that of the greater one by repeated application of the rule P9.26.

P9.48.  These programs have been anticipated by the programs P1.68,

P9.49  PLJ2,and P1.74

.
\‘« -

P9.50 . ™

4) Operations with.two operands

A

With regard to the number of digits see page

A

- L [\

P9.64 . SN
A9.2
V'+V =R . R; = signal *increase number of digits ”
V| o 1 o
S 1.n In’ l.nt+l
—= 2z | Wi(n) VAFV=12 (VAV)v(zaz)=2z 1z +2z =R
Vv 0 o 1 1 o 1 1 o o |l o o
K i i i i i i it1i i i
S 0'00'oo'ooioooo’
z= R z =R
v o| o 1
K| n n n
S o o 0 o
P9.65
A9.2
-V =R R; = signal “result negative ’
Vi o 1 o In this case R is representing a supplement
S 1n l.n 1n °
+= z | Wi(n) V~V=z | (VAV) v (zaz)=>2 z f+z =R
V|- o o 1 1 o 1 1 o o 1 o o
K S SR U I T T S S ©5 U B T S
z= R
Vi o 1
Kl n o

.
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P9.66
A9.2

Vi

V ~V =R
A"/ 1 o o
K| In’ ln

As P9.65 , however, V exchanged with 'V
1

Multiplication

In"~

<159 -

o)

as

R9.65

In the general case of the structures , V as well as \l/ have to be transformed to the
&5 o

\‘- -
same number of- digits ~

V XV =R
V]| o . 1 o
S

12% Im  1n

The normal case: then reads :

LY
)

V XV =k,
Vio 1 o
S 1.n l.n l.n

Implicit representation of R
0

SUb( V,V) .« 2i
1o
K i

Explicit form

0 =2z V=2
A" o 1 1
.Wl(n)
\" o

lo

i

R =-signal “ overflow ”

1
o

Ub

z+Ub ( V,V) =2

]

() see chapter 2, page %
z X2=1z z =R
1

1 o ol

/

'
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P9.67 with signal
R(V ,V )=(R , R)
v 0 1 (o] 1
S Ilm~  1n 1.n 0
0 =2z V =1z
A% 0 1 1
S Iniln l.n

Wi(m) [R964 (z , 1Ub(z,V)= (z ,V2)5

v fo>. - o o o - o 2
K . e - i
S fn . Ino 1.n o

z = R ;.\,z=’R

Vio o .. 2.1
S l.n in o} o -
. ‘ ‘ . '_ WA
P9.68 Division A
vV : V=R R = Remainder
Vi o 1 o ' 1

S 1.n In In o
Implicit representation

‘A -
Max;x ( VXx<V)=R|(VXR#0)=R

- 1 o o 1 o 1
Explicit form

v=>z',v=>z,|—1‘=>e 0=z

o ol 1 1 3

w ~z>z.->[zx2=>z
o 1 1 1

z =20 >z =>z|+=='z
2 2 0 3

Wiz —2z =21z

[ (2= 0)V (e=0) > Fin?
Ly
z = R z ¥+ 0=R
3 o 2 1

R810(z)=( z , Vz)

1

1.n

1

1.n

3 ST TR PSRN A P PTIAE P
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Legend of the values :

V0 = Dividend

V1 = Divisor -

Ro = V0 : Vl

Rl = “ Remainder

Zo = Current remainder of the dividend

Zl = Divisor X2k

Z, =B, —~1Zy

A .

Z; = Compiling value of the result

P9.69

A9.2

M (V, V)
o 1
" 1n ln-

-

V2V=2z| 7

o 1 o 0

P9.70

A9.2

Min ( V, V)
o 1
ln 1n

V2V>=>2z
1 o o

P9.72

A9.2

Vi
V X2
(o]
9.2

v
A

= R
.o
. la

, - .
»(V=R)| Z>( V=R)
] o o 1 o

= R
o
1n

>(V=2R)| Z>( V=R)
1 o) 0o 0 o

= R

o
9.2

Correct representation

xflv =R

0 1 o

9.2 9.2 9.2

R(V ,
0
lm

V=2 lV=>e l W[G#O?'[R9.10(z)=> z| e —1 =>e:|:l
] o 1 0

V) =R rl(n+ V)
1 o| 1
lm 1.m

Ay .

~—

e e
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IV.  Programs with Positive and Negative Integer Binary Numbers

Representation by complement A10.2.0

Only examples are mentioned.

P10.0
Pos(V ) =R
A"/ o) . o v
S '1.;1'-_’\. .0 K
AV. S

l P9.2

. as ‘

PIO3  V, =0 ] P93
. A
-~ ¥

P104 * 'V, is an integer powe; of 2

Voo R1.9(V)[ > R1.17(V))”

v 0 o o o 0
K{| n-1 n-1
S o I.n] Lo 1n
Examples n=3

000 = 0

olo = +2

Lo = =2

Loo = .—4
P10.8

"V + 1 =RI108 , R10.8 as R9.8

0 0 0 o
I/\
KR - »

A" o 0 0

Ki n-1n

P10.9

1 = RI109 (=R99)
(o)

v, -
l@R‘= R /
o o] 1

. _V
Kl n-1n 0

o <

o=
L

= R10.4

o

o

T
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R) RO.I8 (| V| )= R
1 0 0 o)
o 9.2 ln~ 9.2

163 ..

 imiginary

o)
1.n

RIS (6V)= (R ,R)

1
o

=R

A"
o 1
n-1 "~ o

V »(V."sR}| V >RI08 (#£(V)) »(R , R)

P10.18
R(V ) =(R |
v o )
A 10.2.0 9.2
R=Y7 Vvl R
0 0 1
P10.22
VX (-1 :v)'.._
\'% [} )
S
P10.23 lx
] Xl |
A" o o) 0.
K n—-1
S o 1n in
Pi0.24
V =R|V =R
\'% 4] 0 o 0
K n—1 n—-l
P10.25
Fpos ( V)

0 ) o

K

o

Q

n—1

V]

Ps (V) ~>( V=R)

0 (o]

. Pos (V) >(0=R)
1)

[

P10.26 Increase of the number of digits by 1

R(V )=R
v o o
S l.n l.ntl
Wi(n) [ V=R]|V
v ' o o v]
. K i i n—_l
S o oljo

= R

o B O

(8]

l.n

[}

ln

1

4. .

. v Al e L
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PI10.72
Vl A ~
vV *=R R(V , vV ) = ('R , R)
v o 1 o 1
A 10.2.0 10.2.0 10.2.0
S - 1ln Im l.n o

~

~

- 104 -

The number of the digits did not increae. lllis the signal specifying that the given range

of digits is not sufficient.

SN
The ecpresiton is generally valid :

V=R —(i+V)
o o , i 1
i ;

«“

)

-But i may only bg varied to the extent, that the following is true :

N Ty ™
0<i +V<n
1

This can be achieved by the following program :

Wi(n) [0<i+V<no>[V=Rfi+V)
' 1 o o 1
, i ,

l.m o o 1.m

The digits of R j not yet speciﬁed by this program can be derived as follows :

a) If V is greater then zero then the digits with the indices 0 to
1 ,

to zero.

V>0> (W1(V-1)) | -=R
1 1 o
i

Interpretation : * W-program 1 with the limit \l/—l applied to [

Since V can be greater than n, then W1 must be limited by n—1 in this case. The
i

general expression for the limitation of W1 s :

Min ( V-1 , n-1)
1

Then the following expression results :

V>0 | WI(Mn(V,n))[ —= R

1 1 0
i

V-1 aré set equal

T OO TN B AN AN Bl e B

~y

Bl

o

- e
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. Then , the following expression becomes {rue :

P10.72
A10.2.0

- 165 -

b) If \1/ is negative , then the digits with the indices Ro_1 to R, _j+y, mustbe
1

st equal to the highest digit of V ;. Because if this digit position is occupied by a !
one , this-means that V is negative and that all higher unwritten digits must then

also be equal to one. The corresponding expression reads : “ .‘
V<O > (WI(IVI) [V =R .
1 . 1 0 0

n—-1 n-1-

Here. i‘oo‘,1 Y | may be greater than n . Consequently, the expression must be '

supplement(as follows i
V<O0=| (W1 (Mn(lV i+Ln))) [V=R
1 « . 1 ! 0 o

n—-1 n-1-

Finally , a criterion fo'r.; 111 has to be cstablished : .

Il{ can only become positive if \1/> 0, and if one of the digits of V with the indices
. - o

n—-1 to n—l—\ll is different form V
: o
n—1

.
3TN e R SN sAe. PR PN P

( These are the digits which get lost by an upwards shift ).’

1 1 o o 1
n—-1-i n-1

V>0~ W](Min(V,n))[V +V )= R}

Y

This expression can be combined with the expression on page A 6‘:" . Thus we obtain the

—ytr.

following program : . i
R(CV » V ) =(R » R) H
\"% 0 1 o 1
A 10.2.0 10.2.0 - 10.2.0
S 1.n l1.m 1.n o
Wi(n)[ 0<i +V<n=2[V=Rr(it+V) !
\' 1 o o l 1
K L i

V>0 [ (Wl (Mn(V,n)) [ == R|] V + V =R
\'Z 1 1 0 o o 1
K | - , i n-l-i n-1
V<o »[( Wi(Min( IVI+1,n))) vV =R
\' ) 1 o o
K n-1  n-l-i

©

P . TR WO R P I
<K ‘

PR
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P e R R L L R AT

w

-y T



166 --

V. Opcrations with Positive Integer Decimal Numbers

1) Structure of the numbers . !

A9.10 = nXS1.4 P

4

The single components cprrespond to the decimal digits. These are represented by binary numbers,
with four digits,

+
3O B PNY aRe SR T W

0 0000 _
Lk oool : ‘ ‘ s
27" .oolo ~ i
3 ooLL
4 oLoo
54  oLolL !
6 - -oLLo
7 oLLEL - ..
8 ‘l‘.ooo.
9 * LooL' <
Examples for decimal numbers : n = 4
digit digit digit digit
3 2 1 0 ;
305 = 0000 ooLL 0000 oLol ‘
1972 = oooL ~ oLLL LooL - ooLo

2) Operations with decimal numbers

P9.64 v R, = signal “ overflow ” -

Vv R
A9.10 . V| o 1 o b
Alo9lo 910 910
: .
: R(V ,V )=(R ,R)
A 0 1 o 1 o ‘
s nX14 nX14 (n+1)X14 o b [

This sum is produced digit by digit. First for each posmon the sum of the digits £, is

evaluated form V  and }/
o

This sum is a binary number of 5 digits. If there is a carryover form the posmon i~=1 to the

position i, then Z must be increased by one.
od

If the value Z thus compacted is greater then oLooL (9) , then LoLo (10) must be subtracted .
oi .
and a carry—over Z to the position Z must be effected.
Li+l i+l

There is no carry—over to the first position ( — = % )
. . .o .

Sl m i e =

e i R A I R el AR T

N PP T

e



v R <

© R

v =
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We then obtain the following program

—_ = A
W(n)[V +V =2z |22z +1=2z 7]
) 1 o |1 Jo o *
i i
14 1.4 151 0 1.5 1.5
z > ololo =z
Lo - 1
s oL .0
z >z — Lolo =12z z = R
1. lo o o o
) .
i
Lo L1s 151 15 14|
z »[0 = R *z 2 [oooL= R + =R
1 0o |° 1 1
n ' n _
0 1.4 o : 14 old

In this formula the sub-indices of Z
o
* results in ” symbol. This formula can be varied under different aspeots :

and % can be omitted because of the rule of the

1) Instead of the subtraction of LoLo (10) an addition of the complement can be performed.
The complement of LoLo is :

.ooLolLo

XLLoLoL
+ L

.LLoLLo

Since the difference Z — LoLo must have a value between 0 and 9, only the lower
o

four digits of the supplement are relevant,
Thus we can write

Z + oLLo= Z
0 o

2) Instead of the general operation—symbols the special program identification for the used

type of numbers and number of digits can be substituted. In the first case ( V + V)
o 1
represents the addition of two binary numbers of four digits, resulting in i E i

a binary number of five digits. The used program is P9.64 forn =4 .
We will call it P9.100

" P9.100 = P9.64 , n
A9.2

]
E-S

.
3 OOMT N WA R P RN P

vy

S

L A e

. e v mw ias,

RS

st R Wt P g PRt B

e
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The operation Z + 1 can be represented by R 9.8 " ( z ).
0 o )

The case Z, + oLLo represents an addition of two binary numbers of four digits each,

resulting in a number also of four digits. This is the reduced form of P9;100 without, R .

O
This program will be indentified by P9.101. . : 4

P9.101=P1.100 with ,| ( R9.100, R9.100,R9.100,R9.100 ) = R9.101

R <

n» R

v R

\Y o o o o )
UKl o 1 2 3

N
Av. .

From Z° which was five digifs , the value % with four digits is formed whereby the digit %
» )

is ommited . We then obtain the following program :

Y 4

—_—= 7 \
1
0 o _ v -
Wi(n) [ REI0(CW. , V )=z |z>Ro8(z ) =z
o o 1 0 i o 0 0.
i i .
1.5 14 14 1.51 o 1.6 1.5 1.5
z = ololo= z (z,2,2,2 ) =z
o 1 0000 2
ol 23
1.5 o 0000 14
z »[R9.101 ( z , oLLo) =z z =R
1 2 2 2 o
. i
L o 14 14 14 14
wW3(14) - =R z =R z =R
o 1 o 1 1
ni n.o
o o o o o

In this , another representation for R was chosen .
0
n

3) Now the operation R9.8 ( Z) will be eliminated.
0

( z 2 LoLo) = ( zt1 > LoLo )
o o o

Which means, that in the case V + Y? LoLo. there is no influence
o
i i

of Z  on the evaluation of Z
Li Litl

Pl

-
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"
( In any ca§e, there ia s carry—over %.iﬂ to the next higher position i+l ) . \
" Further, the following applies : ) - ..
z <Lool-+( z + 1) > Lolo : " :
o o ‘
Consequently in the case of X + }/'< LooL there will never be a carry—over %.iﬂ
to the, nex{ position. i i ‘
To consiéer il‘ié;inﬂuence of %1 on %.iﬂ therefore, only the case % = LooL is relevapt.

Then the following expression for % applies :

e Aeiiae

RO.IOG( V, V) =2 4
o ' 0 1 0
i‘. i.. ‘ : .

P
(z > obolo) n2.( z =olool Az ) =z
o . (o] 1i Lit+l

3 OTNEL TR B SSW mdde S e B

R9.8 ( Z ) therefore, is not necessary for the evaluation of %
° A

N anf for the evaluation of
Jd

% it can be combined with the addition of LlLo.

et

First we write :

)
z = ROI01( z , oool) =z
L 2 2 . f
z 2 R9I0O1(z ,o0llo) =1z
Litl 2 2 : ' , t
| ;

In this , % is altered not at all , once or twice depending on the values of % and %'ﬂ'
L , - A A

Since the two values oool. and oLLo do not have a one in the same position the two
operations in  R9.101 can be combined.

RO.101( z, (z, z , Z , —)) =z ‘
2 Li L+l 1i+1 2 ’

In this representation the digits of the second value have to be written in reverse sequence. !

Since Z; is a control value, an intermediate value % = % has to be introduced.
S : d :

eyt Rt T R PP W P T d B S g ment -
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Thus , the following program results :

P9.64 —-=7z
A9.10 V .
S o - ‘e
Wl(n)FR9.100( V. , V)=2z |z=g (221212) =z |
v 0 o 1 o 1 3 000 O 2
K . i i o123
S ; 14 14 1510 o 06000 14
) Sy | @ =2 oLoLo ) (z= olooL A z) =2
\Y% o 1 1
K
S N 1.5 LS 1.5
Ro.101 ( z , ( z,z, 2z, —)) =R
\Y 2 311 o -’
K KIS i
S L o 14 000 14 -
W3 (14) -=R z =R z =R
A% 0 | 0 1 1
K n.i n.o
S o o 0 o} o

VI. The Semi—logarithmic Representation

( as used with computer V, )

1) Structure of the Number

In the computer V4 the numbers are represented in the form

y = 22Xb

wherein a is an integer and b s satisfying the condition

Lo <b fi Lo,o

This expression is supplemented by the sign as well as by the symbol for * imaginary ” and

some special symbols.

The value a can be positive or negative and of the structure A10.2.0 with n= 7. a is an
integer binary number of 7 digits, the negative values being represented as supplements.

The value b is represented by 1+ b’ . b’ represents the digits of b after the point.
The digit before the point is always L . b’ has 22 binary digits.

The sign, the “ Im” —symbol and the special symbols are each Yes—No—Values. They are
-combined to form a group of 3 Yes—No—Values,
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Thus we obtain the following structure of the number :

K, K; @ Ky, () !
ivls]  [els[a[s]2[1]o] [c1-23-4-56-7-8-9-10-11  —20-21-22] ", {
012 6543210 21 201918 4 21 0

‘
SAl = ( S1.3, S'1.7, S1.22)
In order to. avord Jnegative indices, the digits of b are numbered sucessively, beginning with the »
drglt with the lowest value. This binary number with the structure S1.21 is called b". I
b= . 2722

The notation AB1 is represented by the following expression :

AAl =(813, A1020 A9.2) . : b/ . i
The meaning of the componepts 1 and 2 according to page 4 );1{ is only true for normal .
values . This is indicated by me expression : ;
Ko.2 ‘
f
In the case of a special value, the component 1 has another meaning while the component 2 is ~
insignificant. The following values are represented as special values : ;
1) The value y is * exactly zero ” ( K12 ) ) .
2) The value y is “ very small” ( KLs)
14
Iyl 2 264 The limits are :
?
3) The value y is very great ( Kiga ) only approximate values
vt > 2%
b

In this , the sign may be known or unknown. ( K13 ).

4) The valuc y is indeterminate. It may also be complex ( KL1).

In the following section some programs for arithmetic operations with such complicated structures

are developed. As they are only of relevant in case of special interest, this selection is omitted in
the English version .
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Chapter 4
——— 1§
Operations with Algebraic Expressions ' Th A , {
( In particular Calculus of Propositions ) ‘
Contents : Page
. ‘. . \. . = \.. . . . ,
L Introduction ~* .. | ) 1ﬁ 3){
1) Problem Definition ' . ' 7’¥’$
2) Representation of Expressions . ¢¢3g
3) Representation oY Programs and Functions I ‘
| :
.. , b
I1. The Calculus of Propositibns A : /f’ﬂ'(z,:;
NN ) _ .
1) Definition of the Form of Reptesentahon ' 4%%
2) Rules for the Formation of Senes of Symbols and Testing of these for Compliance thh the /] yg)
Rules r
3) Simplification of Expressions : 44‘)/-
4) Introduction of the Computer Oriented Representation of Propositional Expressions /Iq }9
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S b = Ty We e e

PP Pt et o TF S Bl Y g

L Introduction
1) Problem Definition 3
The processing of any algebraic expression , e.g. ‘arithmetic or propositional , is to be auto;’nated.
In detail, the problems are of the following types : 1
a) Investigatian if given expressions are formed in compliance with the rules.
b) Simplification of Expressions ' '
AV, o . s
¢) Investigation of Predicates of Expressions i

d) Ordering of Elements of Expressions

sl . _of

¢) Transfonna:ﬁon of Expressions
f) Substitution’ of Variables by Expressions
g) Development of Programs .
h) Investigation of ﬁxpressx@ns for Identity '
i) Derivation of Explicit Expressions form Implicit Expressions

j) ‘Development of the Derivative of Arithmetic Expressions

3 OMT N P SO AR TR e P

k) Integration of Arithmetic Expressions

v

1) Transformation of Different Forms of Representation into each other

This list can be enlarged , arbitrarily, up to an automation of complete algebras .

2) Representation of Expressions

Algebraic expressions are most advantageously represented by a series of symbols ( stﬁngs ). The F
representation may follow already introduced forms. But new forms can also be introduced, '

which are specially suited for computer processing. i

The commonly used forms of representation must be varied to some extent, since they are not
mere series of symbols ( E.g. negation dash in the representation of Hilbert ’s calculus of
propositions, faction stroke, and representation of powers in arithmetic expressions ).

For the various symbols a uniform structure o is advantageous e. g Si.n. !

An expression has then the form of a hst 83.m = mXo.- !
This principle allows different forms of representation.

3) Representation of Programs and Functions -

The entire field is very extensive, therefore , a systematical numbering of all programs would

be too complex. '

Within various sections many analog programs occur, such as those for investigations of
expressions, simplifications, predicates ¢tc. For the notation of such programs series of letters *
are introduced first which, if necessary , can be supplemented by indices , e.g. Sal , Sa2 etc. for
meaningful expressions ( syntactic correct ) .

R
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1. The Calculus of Propositions

1) Definition of the Form of Representation -

N a .

A form based on the formalism of Hilbert is chosen here, but with the following variations:

a) Instead of the “ & ™, the symbol “ A ” is introduced.
‘b) Operation sy'mbols are never omitted,

c) Negation ‘is-represented by a negation dash * — * before the expression which is to be
negated. If th\xs~éxp;ession is composite it must be put in brackets.

d) Only one type of brackets is allowed.
This form of representation results in mere series of symbols, e.g. :

“

aab
. ~av(bac)
(Z(anb)v(end) ve) ~e
R P Y
The following types of symbols are avaiable :

a) Variable Symbol

b) Negation Symbol  ( monadic )
c) Operation Symbol ( dyadic )
d) Bracket Symbol

e) Blank Space Symbol.

The rumber of the variable symbols is in principle unlimited, but a practical limit is set by the
structure ¢ of the symbols.

The following operation symbols are used :
V  Disjunction
N\ Conjunction
- Implication
+  Disvalence

~  Equivalence

The brackets are round ( ).
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As an example for the representation of the symbols we take the following notation:

01234567

+
0000————
0000——1-—
0000+—+—
0000++——

L .
Ot

© =0t ———

[ Y, v—
+t Ot -

‘Variable
Blank space

Negation
. N
IR

Brackets

'
A

Operationssymibols

o= S1.8

P4 <>

4 .

Va(x)
Zr (x)

Neg (x)
KA (x)

Kiz (x)

Op (x)

‘“ 0 " means, that the component of ¢ in question is different. In the case of variable symbols the
positions o to6 of ¢ are used to identify the variable (index of V).

Predicates are introduced for the different types of symbols, for instance :

v
K

V= vVa(V)

2) Rules for the formation of series of Symbols and Testing these for Compliance with the Rules

The following rules are established :

a) A single variable represents a meaningful expression

b) Insertion of a negation symbol in front of a meaningful expression results in another meaningful

c) Insertion of an operation symbol between two meaningful expressions results in another meaningful
expression.

expression.

d) Bracketing of a meaningful expression results in another meaningful expression.

Expressions developed according to these rules are in any case propositions. But they do not always

correspond to the operational linkages of their development.

The expression — a + b for instance can be developed form the expression a v b, but the former

is not the negation of the proposition a + b.In common representation it doesnotmean a + b

‘but @ + b.

Likewise the expression | ay~ by and ay ~ by can be combined :

31/\ bl v

a2vb2

——
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According to the rule, that the symbol v binds more strongly than the symbol A , this
expression does not correspond to the expression :

( .al ~ bl ) v ( 32 A b2) . "q

‘but to the expression

‘But this result-is\not relevant with regard to the criterion * meaningful expression ™ . Expressions

formed according to-the rules given above are in any case meaningful.

Since any meaningful expression can be produced with the aid of brackets, redundant brackets
may occur. '

y

The exact fdrmula%jon of the rules is the following :

Sa( x ) . means “‘ x Is ameaningful expression » -t
. . A
A ‘
.~ . N
va' (x) - *+ t.means “ the expression x consists of a single variable ” .
1Z ( Yo » V1 ) means concatenation of the series of symbols y, and y;

(x) | Sa(x)~] va'(x) .
v [x = 12(y5¥1) A Neg(35) 4 Sa(yy)]
v [X = 12 (y0¥1,¥2) A Sa(¥5) ~ Op (1) A Sa(yy)]
v [x = 12(yp v ¥y) A Kla(yg) A Sa(yy) ~ Kz(yy)]

In order to transform this implicit expression for Sa ( x ) into an explicit one the following
procedure is applied : .

Expressions of the form Sa ( x ) are developed step by step from single variables according to
the rules b, ¢, d ( see pageA45) . In any step , symbols or series of symbols are concatenated.
Therefore the criterion has first to be established that two symbols may follows each other in a
meaningful expression . '

.According to the rules a negation symbol must be situated in front of a meaningful expression.

An operation symbol must be situated between two meaningful expressions

The left bracket ,(/?nust_ be situated in front otﬁhe right bracket Fbehind a meaningful : f °

expression .
The following predicates are defined :
Az (x) “ The symbol x may be situated in front of a meaningful expression >

Sz (x): “ The symbol x may be situated behind a meaningful expression ™
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The exact formulas read:

Ex)Sa(x)a x=V) = Az(V) -

A" o o
K o

S oXo o ¢ o o

(EX)(S&(X)/\-'X= V) =8z(V)

\'% o 0
K “m-1

P
S mXo Y SR | o o

AV -

( Meaningful expressions exist, tiie first and the last element of which are equal to V).

(o)

From the formulason page M the following recursive definition for Az results:

Va(x)v Neg(x) v Kla(x)-v Az(x)~Az(x)
By an transformation, Qot‘éh'oyv'fl\'idn detail here, results:
Va(x)v Neg(x) v Kla(x)'~-Az(x).
Similary, an expression for Sz can be developed:
Va(x)vKz(x)~8Sz(x).

The predicate ‘Az ( x ) is defined as follows:
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“In an meaningful expression the symbol x may stand in front of a symbol of the property Az .

From the results:
Neg(x) v Ka(x) v Op(x)~‘“Az(x).

In the same way Sz’ (x) is defined :

Klz(x) v Op(x)~Sz(x).

Supposing that each symbol must have just one of the properties

Va(x),Zr(x),Neg (x), Kla(X),KIZ(X),OP(X)

then must be true:

Zr (x) > (‘Az(x)~Sz(x) A (S22 (x)~Az(x)).

Now the auxiliary function is developed :

S{(;(V,V,V)
A" ol 2
S 0 o OXo

g T a MW% //M( e/g /Q)W/QA e

et bl Glge v lhvcne

The symbol x}xfi meaningful expressxon!may follow 2 symbol of the property ‘Sz .
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“In the list V the element V immediately follows the element V. > .

2 1 0
(Ex ) [V=VaAV =V] =50 ( V,V,V) i
2 0 2 1 ol 2
X x+1

Now Sql can_ be defined implicitely :

« Meamngful senes of symbols are possxble in which the symbo] V follows the symbol V 7’

.- 1 o

( Ex )[( Sa( x ) A S0 ( V,V,x))=Sql ( V,V)

ol _ ol

a 4

“The following: expression can be established :

(‘Az (V) a A (V))~v (S2( V) A S ( V))>Sql ( V,V)"

o \‘_'.,1; o 1 ol

Its derivation has already been performed. This has to be additionally investigated only if other

cases of succeeding symbols are possible which this formula does not identify. Recursive conclus:on

proves that the formula rules all cases. It representes all cases in which symbols for the limits !
become succeeding symbols by concatenation .

Single symbols and series of symbols of the property Sa ( x ) exist as elements of this

- concatenation. These can be developed step by step form single symbols, without generation

of new adjacent symbol combinations.

So we may write :.

(‘Az (V) A Az (V));/(SZ(V)A S22 ( V))=Sql ( V,V)

0 1 _ W) 1 ol

This can be transformed as follows :

Sa(V)*[(X)(y)(SqO (xy,V

Zr ( V)A Zt( VYA (Sz( V) +Az(V))=>Sq1(VV)

0 1 0 1 o1l
This is only true for isolated expressions which do not include symbols for “ blank space

Now one necessary condition for Sa ( V ) has been formed :
0

) > Sql ( x,¥ )‘)]

o o
But this condition is not sufficient in the following cases :

v a

(aAbna

It becomes clear, that the first symbol must be of the property Az and the last one of the

]
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property Sz

Sa( V. ) = [ Az (V)/\VSZ(V’

\" o 0 o
K (o) m—1]
‘S - mXo o o

The two formulas still do not cover all cases ; e.g. not the following ones :
TN, .

(a-b 5 _aa(bve))

These expressions contain too many, respectively too few, brackets. According to the rules the

numberof the ( symbols must be equal to the number of the ) symbols :
Sa( V) » [NG(xeVaA Ka(x)) = N(R(XEVA Kiz(x))
o o- o
them ;
a) v (b

Additionally, the following conditions are required :

If for * growing list ” any list is understood which can be extended to the list V by only

- . ‘
Even the three formulas arétill not sufficient , since the following series of symbols satisfies

rere

T

I TN e PSRN AdA B W P

nppy

g R PR W

P T
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A,

adding further symbols, then the covering condition reads : * For any growing 1Rt the number
of ( —symbols must be greater or equal to the number of ) — symbols . This condition
is not fulfilled by the growing list a) which belongs to the series of symbols a) v (b.

It can be defined :

( Ex ) ( Lz( V , X ) =V ) = Al (VV)
A 0 1 o1l
S oXag oXo oXo oXo o

Al ( V,V) = “ V isagrowing list of V>,
ol 1

The conditions mentioned above then look as follows:

Sa(V )~
\' o
S oXo

(x) [AR(x, V )> N(J(yexaKa(y)= N(J(yExnaKiz(y))
Vv o ’ ’
S oXa o OXg oXg o ¢ OXo o : ¢ o UOXo c
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Now we will set up the complete program for Sa (V )
o

- A
C x)(y)|( S xy, V)=>Sql(xy)ksel( V) A Sz( V )
o] o} o)

0 m-—lix"'
A[N(?((XEV Kla(x))) = N({(xEV A Kiz (x)))J \~/
. o 0.

L y o »
. “rrsa.— = 8a( V)
\" 0
:'\ ’ S mXo

This formula was derived hypothetically. Its proof must be performed by recursive conclusiogs,

A
A

Since a compositeke){presxs\"i‘on is developed step by step by combining symbols and sub — expressiodis,

the following must be true :

“If Sa(x) is true for the generation of used partial expressions then it is also true for composite

expressions . ” The exact proof is not reproduced here.

The explicit formula for Sa( 'V ) can be transformed to achieve easy computability. To each
0

growing list of V avalue e is assigned, which is equal to the difference of { — symbel-and-)-

—symbol.  ° . 12 (_W
JTR(V )=R|R=80 (V) Ao e n /
Reso (V) e J- ksl

o o
oXo "o
Az(\@»/\k “=72|0=¢
o o o :
o
(1] o (i) (14 l.n
w*ux(@ev ) =2 s@(z,z)»/\k i
0 1 ol o
o oXo (/]
Kla (z) ~>( el =¢€ ) Kiz ('z).->(e—-l=’e)
1 1

N‘}
<
AN

AT YA (x,£V)—> N (J(yexa Ka(y)> N(J(yexa Klz(y)))} |
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Explanation :

a The first symbol must be a start symbol

@ Z,, is the last symbol of the just investigated growing list.
Z, is the following symbol.

The first Z is supposed to be a negation symbol,in order to comply with Sq ( Z, % )
. )

S
The -* balance of brackets ” € is zero at the start,

The next element of the list V0 results in the new Zl‘
If this does not exist then go to @

For Z‘(; and Z; the * sequence—condition ” Sql must be true .
If Z; isa ( —symbol then e is increased by one.

If Z; isa ‘)‘. L.s,)'frtn.bol‘ then € Is decreased by one.

In any step ¢ must be greater then or equal to zero .

Z, is substituted for the new Z, . Go back to @

The last Zo must be an end—symbol.

©PCPVLVLL

€ has to be zero at the end of the computation .

It was already been mentioned that this program also results in the predicate * meaningful

expression ” if there are redundant brackets.

The following cases can be digtinguislled :
a) Single variable in brackets :
(a)A~b
b) The entire expression in brackets :
(a v b)
c) Redundant brackets :
(a-~ b)) v ¢
d) Brackets which are redundant according to the associative rule :
(a ~v b)) ~ b

e) Brackets whith are redundant according to the rule of stronger binding .
( a Av b ) A C
The cases 2, b, ¢ are especially simple and will therefore be discussed first.

In order to exclude these cases, new rules for the development of meaningful expressions have

to be established. For this purpose some new predicates are defined : :
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Aa(x) = ¢ xisa “ linkage expression ™ ( it can be linked to operation symbols )
Ba(x) = “ The series of symbols X can be put in brackets ” . . N
Ca(x) = -* The series of symbols x. is put in brackets once ™ .

The rules for the development of meaningful expressions then assume the following form :

a) A single variable is a linkage expression .

. N N \ . ) .
b) By inserting anegation symbol in front of a linkage expression an other expression , which

can be put in brackets , is produced .

¢) By inserting an operation symbol between two linkage expressions an other expression, which

.

can be put in_ brackets , is produced. ,

d) By bracketing an ex‘pressigq for which this is allowed a * bracketed expression " is produced.

.’

e) An expression whicll"cgm h_% put in brackets or a bracketed expression is also a linkage
expression. : BN

f) A linkage expression is also a meaningful expression. A bracketed expression is not a meaningfu

expression.

The formulas for these rules are the following :

In order to specify that these are the only formulas for Aa, Ba, Ca, Sal they have to be
formulated as follows :

a) Vil (V) - Aa (V)
o o
b) [V=1z( xy ) A Neg ( x) A Aa (y)] —>Ba(V)'
L o ' 0
c) —\./=Lz( xy,z) ~Aa ( x)Aa0p (y) Aa(z):] -+ Ba(V)
Lo : 0
d) V= 1z( xyz) A~ Kla(x) A~ Ba(y) A Klz(z):l > Ca(V)
: Lo o
€) Ba( V)Y v Ca( V) — Aa(V)
o 0 ' o
f) A2 (V) ACa( V) >Sa (V)
) o o

.
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- [Va'(V)vBa (V)vC(V)~Aa (V)jl
[o] ' (o] 0 (o] ,
_ B T
A[V = Lz (xy ) aNeg(x) a Aa(y)) v (V =Lz (x,y,2) A Aa(x) A Op(y) A Aa(z)) ~ Ba ('V )Y
L. O o _ -0_1‘
AV = Lz(x,y,z))\Kla(x)ABa(y)AKJz(z))"' Ca(V)
Lo o o]
A[Aa (V) AE( V) ~Sal ( V):' | ‘
L 0 o : 0 ’ I

To transform this. 1mp11c1t formula Sal ( V) into an explicit formula, the condition for Sql (x,y )
is established first. It canﬁlown that the’formula dérived before for Sql is also true in this case .
Generally , the followmg is true :

e

Sa]‘(x)-> Sa0 ( x)

which means that if an expresslon is meaningful according to stronger rule Sal, then it is also
correct according to Sa0.

To obtain Sal the formula for Sa0 must be supplemented by additional rules for brackets. Only -
expressions of the form Ba ( x ) may be bracketed. But these again can only be developed by
the linking of expressions by means of operation symbols or negation symbols. Therefore , at least
one operation symbol or one negation symbol must be situated between two coordinated brackets.
Examples '

(Faby f
(avbac)
(-a )

H
(-—avb)

But this symbol must not be bracketed by additional subbrackets such as, e.g. :
(C -2a))

This is a case of duplicate brackets. The formulation of this condition is possible with the aid of
the balance of brackets e, which specifies how many brackets have to be eliminated for each
Va — or Neg — or -Op— symbol . :

————

Example :
(aanb)v(anan(-b~vc))

€ i11 0 11 22 22

Within each pair of brackets there must at least be one operation present or one negation symbol :
of the corresponding level of € . This is expressed by the auxiliary values %

€

LR g A

3OO T R BN ARE R WK P

ke e g RN A A s o -

P e vt

NP gt gt e R P YA B

RN

/” /ﬂel,f



— 184 —

The following program for Sal results :
. \
In order to exclude bracketing of the entire expression, % has to be positive in thg case where
0 T
V is not a single variable . . '
o B
‘
R(V )=R| R=S8a (V)
\Y o 0 o o
S “.OXo. ,
Az (VYSAR|®@=z | 0=e| -2 grt, ;
\' 0 0 o 0 7‘ \V
K o ' l
w —px(_i\_e v )= z | Sql ( i,z ) = AR |
v o T 1 ol o %
K RN - S
LT ™ - ¥
Kla(z) = |etl=2>¢ | -2 g
\Y 1 ' 2 :
Op(z) v Neg( z) » [+= 2] ! ;
\Y 1 1 : .2
K ‘€ _| «
Kiz(z) =»[ z= R| e =1 =¢| ‘
A% 1 2 o .
K € .
e >0=>ANRY| z =2 d
\'A o 1 o ' f
K L e -
S2z(z)=AR| e = 0=AR (vi(v)»z)=AR
\' o 0 o o 2 o
K ’ 0 _ !

Now the case d) and e) ( see page A% Z) are dealt with. It is also idented to exclude brackets,
which can be omitted according to the binding rank of the operation symbols.

The ranks will be ordéred in such a way that the stronger binding symbol has the lower rank. The
symbol with the higher rank, therefore reaches farther. Thus the propositional operations are then
ordered as follows :

> o~

345

-V A
012 |
1

If the rank of a symbolv is designated Rg ( x ), then it is possible to assign a rank Rg (y)
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to each expression. In this single Va — symbols are assigned the rank zero.

Since composite expressions can only be developed with the aid of operation symbols' each _
composite expression has an operation symbol, which corresponds to the last composition. The
rank of this symbol is equal to the rank of the composite expression.

Now new rules for meaningful expression can be established : -

a) A singlé vagiable symbol is a meaningful expression of the rank zero.

V. o
~e

b) By insertion of a negation symbol in front of a meaningful expression, the rank of which is
either zero or is not zero but bracketed, another meaningful expression is produced.
R /
¢) By insertion-of an operation symbol. for which the associative rule applies ( v , A ) between
two meaningful expressions, another meaningful expression is produced, if the expressions to
be connected satisfy the. followmg conditions : either their rank is lower than or equal to
that of the operation symbol‘ or it is higher and the expressions to be connected are bracketed

singly.

d) By insertion of an operation symbol, for which the associative rule does not apply (-, +,~ ),
between two meaningful expressions, another meaningful expression is produced , if the
expressions to be connected satisfy the following conditions : either their rank is lower than that
of the operation symbol or it is equal to or higher than this and the expressions to be
connected are bracketed singly.

e) An expression between single brackets is developed by bracketing a meaningful expression not
previously bracketed.

f) The rank of composite expressions according to b), ¢) and d) is equal to that of the operation
symbol used in the last linkage procedure.

g) The rank of an expression is not changed by its bracketing.
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The exact formulation of the rules a) to g) reads:

a) Va' (V) Sa2(V) A Rg(V)=0

0 o 0 )
b)) [Z= Lz (x,y) ~ Neg(x) ~ Sa2(y) ~ ((Rg(y)=0)+ . m’@»]
~> 822(y) A Rg(y)=0
o)) [v = La(xyz) A Sa2(x) A Opay) A Sa2(2)
o Tt :

A (Relx) <Rgly) # KI() A (Rela) < Rgts) + KIG)]

a > 532(V)AaRg(V) =Rgly)
. o . [

a9 [v = Laliyz) ~ $1209, A10p0) A Opay) A 5a2)

(] S
A (Rg() <Rg(y) + KI() A (Re(a) < Rely) + KI'@) ]

82 (V) A Rg(V) = Rg(y)
0 o '

e)g) [V = Lz(x,y,z2) A Kia(x) A Sa2(y) A _I{l_r(y) A Kiz(z) ﬁ{
0 -

- KI'(V) A Rg(V)=Regly)
0 0 :

Meaning of the new predicates:

KI'(x) “The expression x is a singly bracketed meaningful expression”,

Opa(x) “The symbol x is an operation symbol for which the associative rule applies™.

The corresponding program for Sa2 can be derived as follows:

S22 (V) Sal (V)
[+ [}

The conditions of Sa2 remain the same, but the conditions for the justification of brackets are made

more stringent. :

First, for each bracketed expression the rank assigned to it must be investigated; further, the rank of
that operation symbol which is linkage with the pairs of brackets. For according to the rules, each
bracketed expression must be fitted with an “inside” and an “outside” operation symbol. If x is
the inside and" y the outside operation symbol, then the bracketing is jusﬁﬁed, if the following

condition is satisfied:

(Rgx)>Rey) v (x=y ~ Opa(x))

]
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The inside operation symbol is the one between the brackets, but not between sub—brackets, which °

has the higher rank. The outside’ operation symbol is that one of the two adjacent operation

symbols ( if they exist ) which has the lower rank. ,
Example : ' ’ o s {
aA(b—>(c~d)Ae)-vg' | 4
Outer brackets
' msxdc op.—symbol : ad Rank 3 ,
' out;i&; op.—symbol : v Rank1
Inner brackets
iqsi;;ie op.—symbol ~ Rank S
 outside op.—symbol ~ Rank 2 ' .

LY
. R ~ . . "'-‘.‘
The rank of the two symbols must be investigated for each bracketed expression. To perform this
investigation currently, i.c. by a step by step. Inspection of succeeding symbols of an expression
the relevant values must be stored up to the bracket level €. To each bracket level 0 to e

the following values are assigned :

'
I T e BN a4 8 PR P

Aot

Z = highest rank of all so far inspected operation symbols of
3 .

€ the just investigated bracketed expression of thelevel €.
( inside operation symbol ) .

Z = lowest rank of all so far inspected operation symbols of the

€ just inveﬁtigated bracketed expression of the level ¢ .
( outside operation symbol of the level ¢ + 1) .

¢
Z = * The operation symbol belonging to Z has the property Opa. “
5 4
€ €
Z = indicates that the preceeding symbol was a Klz—symbol.
6 [
The computation is performed in the following way : as soon as the preceding symbol was a ’

Klz—symbol ( Zg ), ie. after the investigation of a bracketed expression was completed and the
succeeding symbol became known, the justification of the bracketing is tested

After that the values Z, Z, Z are erased.
345
€ € €
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At the start of each bracketing investigation the input values must be set as follows :

Z=0\)Z=5| Z= -
3 4 5 - “~
€ € €

Z must be equal to the highest possible rank of the operation

4 ; -

€

symbols; 50 that in-the first computation of the formula

AV .

Min (Z, Rg (Z)) =2
4 1 4

€ €
“ -
Rg ( Z ) results form Z
1 .4
€
A
. . ".\
First we state : RN
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“ =

v R v ® v v R <

v xR

R(V )®R|R=8S2 (V)

0 ol| o o
oXo
Az (V. )=NANR| &=z
0 0 o
o
o ol o o
Wix (%€.V_ ) >z
0o " «
0 oXo o
Op(z) Y“\.Neg( z)=> [ +=
1 1
- ‘ . |A\
o Ut 'a.“_-;
z <
7
1.3
Y And
6
0
Kla(z)> | etl = ¢ - =
1
1 1
Kiz(z) » [z =AR| el
1 2 0
€
0 o] 1
e >20=>NR| Klz(z) =z
"] 1 6
1 o o
Sz(z) ==>/\R|¢=0=>/\R

(o) [s)

g o|1

(8]
(o]
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R darh o

"

3 OTEME e SO A P P B

e

Erroneous _
see page 141
=€ -= z 0=z 5=z |—=z |2=2
2 4 ' 6
0 o 0
1 0! 1,3 1,3 o
Sq1 ( 'z,z)= AR ]
' ol o
g o 0
(Rg(z)=z |Maij(z, Z )= z ]
1 7 3 7 3
e .
o 13 13 13 13
Opa( z) =1z
1 )
€
o o
>zv)V(z =12z2A7Z) = AR]
3 4 5 o
e+l € €
1.3 13 o o
z =1z Opa( z ) =z
7 4 1 5
€ €
1.3 1.3 o o ]
0 =z |5 =2 - =12z
3 4 5
€ € €
13 1.3 o
€
1
Z =z
0
g 0 ..

(Vvad (VvV)=-2z) =AR
0 2 o
oXo o o
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. Va ’
\)."{f]_\i_prog;axn for Sa2 can be demonstrated by an example :
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ya

A N Mg P P PP RAT B 6w ek B g st e

wa

PP

!
Vo5—(3vb)'>(('CAd)v—b">e)~f .- .
. "‘ ‘
i
€ z z z z z z z 222 1z z
V o o 1 3 4 4 4 555 6 7
K N 1 2 o 1 2 012
= IS ' L i
0 5 o - §
1 - % - _ _
2 -
: ( 1 ~'~( + o o 5 e / - t
3. a (' "a ! (—[ f .
1 +/. ;0 0 o 5 — = ’
~ I } Y4 »
4 v a v ‘ 3
1 K .W';-.\ o 1 o 1 - ~ .
5 b v b V! 1
1 e 1 o 1 i - f
6 ) b ( T :
. 0 ﬁ' o 1 o 1 f + f
7 - ) - ) -L;'t\ 3 "
o . ++ 3 1 3 1 -~ -
8 ( - | ] E
1 ?‘—/\- : 3 0 3 5 T ; -
9 ( ( ( 7 . : | .
2 #r._. 3 o o 3 5 5 b -
10 ¢ ( ¢ | A
2 ' +o e 3 o o 3 5 5 T_T - 14
11 N (v A ‘ | 2
2 +—+ 3 o 2 3 5 2 —_—t - F
12 d A d
2 +—+ 3 o 2 3 5 2 —_t - H
13 d
) 1 ) +—+ 3 o 2 3 5 2 —_t o+ . b
14 v ) v 1
1 +++ 3 1 2 3 1 2 —++ —
A 0 AN
15 - v o - L & ! :
1 +#++ 3 1 2 3 o 2 fo - e ——1
16 b - b ' 0
1 #0312 3 0 2 - = !
17 - b -
1 +++ 3 3 2 .3 0 2 —t - ‘
18 e > e
1 +++ 3 3 2 3 0 2 —t -
1 ' :
o) o ¢ ) +H+ 3 3 2 .3 0 2 —_—t o+ s
2 ~ ~
0 ) ) +H+ 5 3 2 3 o 2 —_t —
21 ~  f
f o- +++ 5 3 2 3 o 2 ——t -

The current intermediate values have to be distinguished with regard to the difference between
old and new values to the left and to the right of the symbol = » . Therefore, the symbolg
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are sometimes positioned between the lines.

The program of page 4 % is not yet complete. For this reason it was designated Sa2' ( V) H
according to Sa’( X )all brac_kets which are redundant according to the rules, are e«limina}gd )
but no investigation is performed to find out whether all necessaiy brackets are set.

The program allows the expression :

a—+b-—>c¢

but according to.\'.che rule d) page 185 such an expression is not allowed. Permitted are, either

the expression > ..
(a—->b)~>c
or the expression :

“ [

a~>(b—->c)

Imp ( x ) = “x is an implication symbol ”
Disv.( x ) = *“x is a disvalence symbol] ”

Aeq ( x ) = *“x is an equivalence symbol ”

The program on page /(X.‘{.must be supplemented by the following :

Op (z) =»[lmp(z)=z Disv ( z ) =z
A% 1 1 10 1 11
S o 6 o o 0
Z A Z A Z AN Z A Z A
\Y 8 10 11 8
K €.0 o el o €.2
S o o 0
z = 1 zZ = z =
\" 10 11 12
K €.0 el
S Lo ] o o]

Aeq ((z ) =z

z = NR .

1
0
12 0
o o

0o N

e g e tin e

KW

B ;

3

:

v‘ ‘ ,‘:‘
A

!
L A7,
L

,l

P

awet t

P
-,

y

. -3

for the associative rule does not apply to the implication. Therefore, if the expression which is to %
~ be linked with another e‘xpi‘e'ss_ié\m. by the symbol - is an implication itself, then this expression 3
has to be bracketed , since both expressions are of equal rank. 5 ,

. s

The same applies to the symbols ~ and ~ ., We get the following demand : H
* On the same bracket level only one of the symbols -, +, ~ at most is allowed ™ . ;

Thus we need for every level three Yes—no—Values which indicate if these symbols already appeared
within the just investigated pair of brackets. The three values are combined to the value % b
€ ¢

Definition : .

2|

0 !
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At the start the following has to be set :
(—-=) =z
\% 8
K o A T
S 13 !
and for each Kla — symbol :
Kl\a..(\j.z ) T)G""l =>€ ( - = ) =>z e ‘
\Y% B TR ) 8
K . s - .
S ' 1 1.3 -~

The program on phge ‘1Sicontains an error.

If the last symbol isa ) *- syn'xb;ol then the coordinated bracketed expression is not investigated. =~

For instance, the following expsgssion is allowed according to the program : .
an(bve )'

Here the brackets are redundant. This fact cannot be tested, however before a'symbol suceeding
the Kla — symbol is investigated. Since this symbol does not exist, the test cannot be performed.
This failure can be avoided in the following way :

a) An i~ expression is substituted for the u — expression

Pl

AP

I OME TR b BATRN AR B O P

& oy

b) If the last symbol is a (—symbol then the investigation of the bracketed expression is perfoxmedF

at once.
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R(V )= R| R=Sa2 (V)
0 o] o )
mxo o - a
Az(V) =N R| &= 2 0=z |5=2 !
0 o ) 3
o o
o .ol o o 1.3 13
-= 2 __'\=;: . ( ___._)=} z ’
5 6 | ™ 8
0 0
o .0 13
\‘\ 14
WIN(V)V=12z.|Sq( zz) =ANAR
-0 |o 1, T ol o - .-
i 1. 0
Lt o™
g O “. 00 0
Op(z) v Neg(z)»] += 2z Rg(z)=z Maj('z,z_ ) =
1 1 2 1 7 3 7
€ €
o 0 13 13 13
z2 <z =2z =12z |0pa(® = z
7 4 7 4 1 5
€ € €
t 1.3 13 1.3 13 o ]
Op(z)»{mp@=2z |Div@)=z |Aeq(z) =z.]]
1 1 10 1 11 1 12
o g o g o g 0
ZA~zviazazZa~z=>NR
8 10 8 " 11 8 12 o
€.0 €.l €2
o o o o o o [\
zZ =z z =12 zZ =1z
10 8 11 8 12 8
€.0 el €.2
0o olo olo o -
Kla(z) »[ etl=e | — =2z | 0 =2z |5 =2z |- z | (--=)=z
1 2 3 4 5 8
€ € € €
Y o 11 o 13 1.3 0 13

S T gme e

-~
T S 3t S ¢ e

i
»
{1
i
U
CYE
‘l
P
:
t ¥
*
¥
-8
1
i
t
z 4
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3) Simplification of Expressions
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2
o

} Kiz(z)»|z=>NANR| el =¢
1 2 o '
e . -
o 0 0 1 1
(Op@) A 2)v ( Klz(z) A i=m=1)> [( z
1 .6 1 3
-0 e+l
A & / 13
7
* L 13
e 20=AR | Klz(Z2) =z zZ =z
' P T 1
0 K 1\ 6 o
- [
L 1 o o o o o

Sz(z) A~ e=0 A(Vd(V )->z) =AR

o)
[

>z )v(z
4 3
€ e+l
13 13
=z Opa (
4
13

\
z /\2)“’/\11‘1F
4 5 0
€ €
13 o \
z)=z i
1 5

-
o o0 R

An expression for which the predicate Sa0 is true is to be simplified by elimination of duplicate
negations and redundant brackets. This problem cannot be solved in one run since it is only after
completion of the investigation of a bracketed expression and of the following symbol that it
can be stated whether the brackets are necessary. In the first run a supplementary value Z is

formed, by which a Yes — No — Value is assigned to each element of X which indicates16

whether the relevant symbol is redundant or not. First, the investigation is only possible with
redundant negation symbols and Klz symbols, The corresponding Kla — symbols result from

a subsequent backward run of (\)/ .

The program is based on that for Sa2. But here only those expressions are necessary, which serve
the investigation as to whether brackets are necessary. A little variation is introduced, relative to
Sa2. The outside operation symbol is formed as soon asa Kla — or a Klz — symbol occurs.

The Yes — No — Value Z serves the investigation for duplicate negations. It changes its value

7

whenever a negation symbol occurs. At the start of each new period it has to be negative. If %

is positive then
16

then every second gets the mark  Z .
16

i

In the backward run of V from m—1 to O the bracket level is investigated again.

(o]

Z turns positive. If several negation symbols follow each other in a sequence,

Vg R et
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:
=
Z indicates, whether the brackets of the level € are redundant. Then the respective ( and ) J )3
symbols can be omitted. Similarily in the case  Z is positive the respective negation symbol ! }
‘ | 16 N ;
and the preceding one (i —1 ) can be omitted. . % { :
R(V )=R | mz2n ) ;
\' o o ;
S mXgo nXo ;
0=¢| ==z | 0=z |~z ' 1
\ . 2 | 3~ 7 P
K o o : + (/ : i
S 1 0 13 0 }
. ‘ & ‘ .
Wi@mfOp (V) v Neg (V)os[gwz |Mj (z , Rg (V)), z
\% 0 ..o 2 3 ) 3 {
K 1 ‘\ 1 € € ) i ) 3
S g ." ho o 1.3 o 13) i
— . £
Kla (V)o>|etl=e|-= 2z | 045z |52z |- o2 ;
A\ ] 2 3 4 5 §
K i € € € € i
S o 1 1 0 1.3 13 0 ;
i+0AKla’( V)»[Rg (V ) =2z |Opa (V )=z +=7
\Y% o 0 4 ) o S 6
K i—1 i—1 € i-1 € £
S L o L 1] 1.3 0 0 0.
Kz (V)»[ tm=1 n0p( V)>[Rg(V ) <z »[Rg(V )= 2z |] b
\'A 0 o o -4 0 4 '
- K i i+1 it itl g b
S o o o 13 g 13
Opa( V) o 2
v o 5
K i+l € l
S L o |
+= z ’
A 6
K €
S . : L o -
zArzaAa(z>2z)v (2 =z2Az2) 42
\'s 2 6 3 4 3 4 5 16
K € € € € € € € 1 ‘
S 13 13 13" 1.3 o 0 i
7 Le —1 = ¢ __ 1

o T
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Neg (V)az =z |Neg-(V)AZ =2
o 7 16 o 7
i i i -~
o o o g 0
W2(m)[ Kz ( V) 2>[etl=> ¢ z =z
) (s} 16 17
. i i €
l\'\‘ ‘o o o
Kla ( V).A z =2z
o 17 16
L e i
AL}
g o o
Neg ( V) Az =2z
o s 16
i i i1
L o o o N
Wi(m) | z-=V=yuR
16 o )
i _
o ¢ oXg
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Further simplifications of expressions will not be discussed here,

4) Introduction of the Computer Oriented Representation of Propositional Expressions

Before éntering a discussion on additional automation of the Plankalkuel it is of advantage to
introduce a form of representation which is specially suited for this purpose. Since this form
will be processed by computers, it will be called “ Computer representation * .

The operation symbols between two neighbouring variables are replaced by function symbols
which are placed in front of the variables.

So is replaced by
aab , A( ab )
avb .v( ab )
a>b : > ( ab )

etc.

For operations for which the associative rule spplies, the function symbol can be associated '
with several variables : ' :

avbvevd v{abcd)

L ad

SRy T
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Composite expressions then assume the following form :

~(aCav(be))) ’
V('\A(a,b)’—)(cyd) ‘ N““. ‘

aAnbwve~d

(aab)yv(c=>4d)
Negations are represented as follows - : 4

Single variables are negated, as with Hilbert’s representation. The negation of composite expressions
is indicated _by\'a negation of the respective operation symbol.

v ]

A(V( b)) !
~(v(ab)v(ab))

Assuming that the variables are represented by single symbols the comma—symbol can ﬁrst be ;
omitted. Further; the brackets can be eliminated by the following method :

[ 3

‘ v
To each operation sym‘bol a rank is assigned which represents the bracket level of the expression ;
succeeding the operatibn- syr;rhol In the followmg expressions the ranks of the operation symbols
are demonstrated :

V(a,b) ~(A(a,v(b,c)))
1 3 2 1

NP,

(v (85)v(5b))

2 1 i

These expressions can now be represented univocally by omission of brackets and commas : f
v ab ~aavbe | ~vabvab : t
1 32 1 21 1 ‘ '

Now the “ range ™ of an operation symbol always reaches to the next operation symbol of the

same or a higher rank.

The order of procedure of the operation symbols accordingb to page .i 4could be applied; the
highest rank of a formula could then be reduced. But the resulting srmphﬁcatron must be paid
for by more complete programs. °

However, this representation allows ambiguitles, as the following expressions with identical
computer representation show : '

avbacad aeq Avabed
2,1

avbvead aeq Avabececd
21

This can happen only if a conjunction and a disjunction symbol are adjacent to each other. The
same ambiguity occurs through an exchange of the symbols A and v in the above expressions &
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(a~rab)vewvd aeq vaabed

21
(aAbAC).Vd aeq vaabed . . e

21 B

Such ambiguity is not possible, however , with 0peration/:vhich must always deal exactly with
two operands.

a vb\'/“c-.-{."d‘, aeq +~vabed
. :w‘. . - 21
(c~d)aaanbd aeq A~cdab

' 21

In the first case .{he last of the variables a, b, ¢, d, must be coordinated to the symbol =,
since only then does the symbol combine two operands. The same applies to the second
expression in which the"‘_v'qriaples ¢ and d must be coordinated to the symbol ~ and )
the variables a and b’ to the symbol A

These ambiguities can be eliminated in various ways :

a) Variation of the sequence according to the commutative rule :

avbacad aeq cAadaawvhbd Acdwvab
2 1

avbwveaad a2eq daAaavbve ~Advabec
2 1

This method does not need any additional symbols, but only formal transformation . '

b) Assignment of ranks to the variables :

avbacad aeq Avabecd
2100 1

avbvead aeq Anabecd
‘ 21 ool

¢) Auxiliary operation of the identify I ( x )
I (x) =x

Now a rank can be assigned to I ( x)

avbacad aeq Avablcld
21 1 o
avbvead aeq Avabeld
21 1

.y
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d) Use of separation symbols .

avbacad

avbwveaad
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aeq Avabl| cd

21

Avabel d - e,
21 '

¢) Combination of the separating symbols with the variable symbols :

A Yes-No-Value is assigned to the variables which indicates whether the variable is situated

at the end Qf a sub—expression:

~

avbacad - ~

avbvczx-'d

"

Of all methods, except ), the- methods d) and e) require the smallest investment.

\

Avabed
21

Avabeced

21

.’

In the following méthod .|"<_i)_ separation of symbols is applied. These can then be easily

eliminated by method a).

Once again some formulas are confronted with each other in S—representation

representation :

S—representation a
a b
a—>b
avbwvevd

aAabve~d

=
>
o
~—
<
~
(1]
4
[=N
~

(avbAc)vdAe

Computer—representation

o]

D <
-2
[
o
- 3
o
[=N

N D>
- <
'S
o

|
<
i
o
<t
(]
o

and in compute:
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Representation of the symbols : o
Each single symbol is now composed of several components :

1) The type of the symbol
Variable or operation symbol, or blank space, or separating symbol T Al

2) The information whether a value has to be considered as positive or as negative.
3a) In case of a variable the index

3b) In case of an operation symbol, the type of the symbol and the rank.
s\ . ) .
An example Yer.such a code which the structure

o = S1.8 ( see page {1&(,57’ )
isgivenbelo_wf ‘

a

N T Neg}Variable }K + Kg = Index
+.] +| Pos 0
R N R
+ — — | —=|+]| Pos
- + - - - I};Ieg} n ‘ K7 =
= ol Bl B s Negation—
. » «
+ + — | — | =] Neg | Y information
+ + I I Pos} - » op-symbol KQ,KI,K2 = Rank ,
— — + | — | —| Neg
- - o+ | -]+ Pos} K
+ - 4+ | = | —| Negl] _
+ — + - + Pos
o o| - - = |-=1= blank space
o o + + + - - separation symbol

Remark : Method d) is not sufficient , it is better to use method e)
With the above used code the following predicates can be defined :

Neg ( x )  the symbol x is negated

Va ( x) the symbol x is a variable

Op (x) the symbol x is a operation symbol

Opa ( x )  the symbol x is a conjunction — or disjunction —symbol
Zr (x) the symbol x is a blank space symbol

Tr(x) the symbol x is a separation symbol

Rg (x) Rank of x ( in the case Op (x ))
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Chapter §

Chess—Programs

Contents

1) Geometry of the Chess—Board

~ .

1) The Given: S\ystéx'rx" -
2) Propositions on the Location of a Point
3) Division of the.Field into Sub—Areas ~
4) Prbpositions qn“_the Location of two Points- relative to each other
5) Propositions on the Location -of three Points relative to each other

6) Formation of Sets ofooints‘,\l

IL) The Point Occupation

1) Introduction of the Occupation Notation ( AA3 )
2) Operations with Occupation Notations ( AA3 )
3) The Point Occupied Notation AA4 '

III.  The Field Occupation

1) Introduction of New Structures ( AAS, AAG, AA7, AA8 )
2) Operations with A7 ( Power of Occupation ) .

3) Operations. with the Field Occupation

4) Programs on the Freedom of Pieces to Move

5) The Conditions for Checkmate and Draw

IV The Game Situation

1) Introduction of New Types of Data ( AA9, AALQ, AALL )
2) Operations with AA9 and AA10

‘List of Types of Data and Constants

-
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I) Geometry of the Chess—Board

1) Given System “

The chess board contains 64 squares. From now on they will be called “ points ” . The witole
area of the board will be called * field ”

The location of ‘any point in the field is determined By two coordinates, each of which is a 23
= 8—fold vanable Therefore, the location of any point can be represented by 6 yes-no-values,
or by 2 bmary munbers with 3 digits each . Then the following notations are equivalent to each
other : . ~

Common Notation » . . Coordinates Notation

I/I%I/l/

LLL //l//l/%/l//;
///I%/l/ ] o () 1 7 |
/,4?%.% | Lol 7 :
W ' ‘-.: Loo

oLL
olLo
ooL
000

%’%I%I%‘
e
B
N

a bcde f gh _ §

In the ' coordinates notation the horizontal coordinate is written first, the vertical coordinates

second. Then the following notations for instance are equivalent:
¢2 = Loo, ool
g6 = Llo, LoL

Two new structure symbols are introduced :

AAl1 = S1.3. Coordinate of a point
TAlL
AA2 = 2XAA1l Location of a point

Several operations with coordniates are required. These correspond to the arithmetic rules for
binary numbers.

(V+V, V-V, | V=-VI])
0 1 o 1 o 1

2) Propositions on the location of a point

Marginal Values for PAl to PA3
R(V )=R

\' 0 o

A A2 o

T TR TR MR ARE B 9T P

-

n
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e

RPSREEN

ot
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PAl ¢ V, is a white point ”

V ~V =RAIl

Vv o o (4]
K | o0 .o
S o o (o)

PA.2  “ Diagonal point ”

——

V =V.v (&V )=V =RA2
Vi|o 6 L o o o
K| o 1 T oo 7 1
s |13 13 1.3 13 o

PA3  “ Cormer ;point ”

V. =000 vV =1LLLvV =o000 vV =LLL = RA3
Vio o A o 0 o
K|o N T : 1
S 1.3 13 . 1.3 1.3 o
'3) Division of the field into sub — areas

R(V )=R
A% o o
A A2 1.2
PA4  Quadrant of a point

(Vv , V. ) =RA4 ni LL
v o o o
K 0.2 1.2 .

, A )
S o o 1.2 oo | Le
PA.5 Zone of a point

Auxiliary program H

ordinate * s distance from the center

V >4>V-4=RAS
Vi]o o o :

S 1.3~ 1.2 : oT

V <4 -»>(3-V)= RAS oL
Vio o o ) Le

8 1.3 1.2 LL

—
M arT ed Rl T g mist e Vi N e g

> pam B

~y
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PA6

‘[ Min( RAS(V ),RAS(V )) =RA6"

v | o) () o
K o 1 :
S ' 13- 1.3° 1.2

. o :
4) Propositions in the location of two points relative to each other

N
E

R(V:,V )=R~

v 0 1 o
A A2 A2 0
PA8 Ormbgonal“xelati,on
V- #VAV=VYVvV =V =RA8
\
Vio 1 o ' G, 1 0
K o o 1" 1

A A2 A2 A1 A1 A1 A1 o

PA.9 Diagonal Relation

V #FVAaAlV=-V | =|V- V| =RA
Vi|o 1 ] 1 0 1 o
K 0 0 1 1
Al A2 A2 Al Al Al Al 0

PA.10 Knight relation

(IV-=V|[=LAIV-V| =L )v (IV~-V| = LoalV ~-V|i=L)= RAI0
A" o 1 o 1 ) 1
K o 0 1 1 0 0

PA.11 Queen relation

RA8 (V, V)v RA9 (V, V) =RAIl
o 1 A} 1 0

PA.12 White pawn can move

V-V=0A[V-V=L v (V =0l AV =
Vi|o 1 1 o o 1
Klo o 1 1 1 1
PA.13 Black pawn can move

V-V=0A[ V-V = Lv(V =1LloAV =
Vi]o 1 0 1 o 1

K 4} o 1 1 1 1

0
1

or

-

RV

1
1

Loo ) ] 2RA.13

oLL )] 2 RA.I2

3 or

1

o

et

9

[PV »4.-<
A

-

.
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PA.14 White pawn can capture - l /

IV-V] =La(V-V)=L DRAI4
A,
Vio 1 1 o T
Klo o 11 '

PA.15 Black pawn can capture

IV=V] =La(V=-V)=L=DRAIS SN
Vio L. _ 1 1
Klo o " .. L1 °

PA.16  Nomove or capture relation

RA.10 (V, V)OIA RA.ll'(V, V) =>l/{A.l6
o_“l"‘-‘\ .0 1

PA.17 The points are adjacent

LN \‘
VEVAIV =V <LWMIV - VISL = RALT
o 1 o 1 Co 1
o o 1 1

<

~

PA.18 There is a point in knight relation to the two points given

signalization of threat to' two pieces

attacked by a knight

Implicit expression
(Ex [ RAIO(CV, x)AaRAIO(V, x)AVFV]
o _ 1 o 1
 Explicit expressxon

(V#V)a[ RAI(V) ~RAL(V)] A IV —VI<4A|V-VI<4

v 0 1 o 1 1 o 1
K : o 0 1

A[RAI(V,V) »R82(IV~-VI)] =RAIS8
ol 1 o

0
1

ven

.

-
LR TY S
N S .
e Rt Wt o e e .y

X
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V0 and Vl are different points of the same color ( RA.1 ) and both the horizontal
and the vertical differences of their coordinates, taken absolutely are less then 4, and if
the points are located in diagonal relation to each other, the difference may not be e'v.eQn :

(R82).

PA19 There are .points located between the two given points

RA.‘II‘Q V,)/) A RAL1T ( V, V) = RAI9
ool : o1

~e

The given points are located in orthogonal or diagonal relation and are not adjacent.

5) Propositions on the location of three points relative to each other

R(V ,V ,V )=R
\ o 1 2. 0

\

A A2 A2 AP o
Restriction :

VEVAVEVAVEYV
o 1 o 2 2 3

( All point locations are different form each other ).
PA,24 Al three points lie on a horizontal line

V=VAV=V=Rp2
o 1 o 2
1 1 1 1

\%
K

PA.25 All three points lic on a vertical line

V=V AV=YVY=>RpA2
) 1 o 2
o o o o

v
K

PA.26 They lie on the same orthogonal line

RaA24( V,V,V) v Rpa25( V,V,V) =R 26
ol2 ' o1 2

PA.27 They lic on the same diagonal line

RA9(V, V})/\RA.Q(V,V)
o1 22

A[(Pos(V~V) _Pos(V-V) ~(Pos(V—-V)~Pos(V—V))]=>RA.27
\' 1 o 1 o 2 o 2 o
K o o 1 1 o o 1 1

B
3 AR TR B RO aRg TP W P

~—y

R ot

P R T ch P

s e e g A T R S pam

-
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"
 PA.28 They lie on a straight line
' RA%( V,V,V) ¥ RA2T( V,V,V)  =Ger ( V,V,V) - ‘
ol 2 o012 ol 2 T i
s
PA.29 V lies between V and V
0 1 2 , 4
RAZB(V,V;V) A [Pos( V—-V)+Pos( V-V Jv[Pes( V-V )FPos( V-
Vi - . 0 1.2 1 0 2 1 1 0 2.
K I o o

V- .

T 0 0 1 1 1

= R A.29 !

L e S el Zah A R R S AT L

PA30 V,V,V are located on the edges of an rectangular triangle
o1l 2 :

Vontp I_o I
[o]

R i

§

- g

\'v ‘\ }

[( V=V )IA{V=W)Iv[( V= V)Ia( V= V)]=RA30 j
o 1 o .2 o 2 o 1 L

o o 11 o o 1 1 é

~ 6) Formation of sets of points

PA.32 List of the points located between V and V

o 1
R(V ,V )=R t
\ 0 1 0 ' ’
A A2 A2 | ©XA2 b
i
Implicit expression : \
$ [RA29(x ,V ,V )]=RA32
\' 0 1
Al A2 A2 A2 A2 oXA.2
PA.32.1 Subprogram to PA.32 !
List of coordinates located between two given coordinates :
R(V ,V ) =RA321 , _ ‘
v o 1 o
S 13 13 oX1.3
VeV 2z |z2(+t=8)]2>(-=28)
Vil o oo ' o
S 13 13
V 6 1 =z z ¥V =] z =uR]! z 6 1 =2
VIio : 1 1 1 i o | o o f

S 13 1.3 1.3 13 1.3 1.3 1.3

S WU e e e

et i e,
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PA32  Explicit program

V =V =22}V =V =3
Vi o 1 o go : 1
K| o o i1 1
sl 13 13 l 13 13 o

22 [RA321(V , V )= z | Fz-[RA321(V
Vio o =~ o 1 2 N 1 Jo o
K Mo 0 1
sl o T3 13 ax13]! o 13-

z Az [Q(:z ., Z ) =R
V]| o 1 . 2 3 0
slo o [ oxi3 ox13 oxa2

AZ P [Q(V |,z ) =R Z Az Qz(z

Vio 1 & .o".-_"“:?: o o 1 2
K RN )
Sio o L 137 " oX13  oXA2l o o

PA.34 List of points in knight relation to a given point.
Implicit expression :

X RAIO(V , x )
A" 0

Al A2 A2 A2

oxX13

!
o
¢
V )=z
1 3
1 1
1.3 o0X1.3 I
¥
, V. )= R §
o o .
i |
1.3 oXo,2 ;
L

R e T it AP e Z ]

B VO

LN

R

e b Ll AT P

JUNIRON

e e T

-

L ol
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Explicit program

—209 —

( Constructive method with variation

of parameters )

ey

RO

T ST N SO ARe TP vE P

e

R T S e F @ it

P RS RTINS

.t g mnoans

e

[P

et

=1z
X ~
1.3°
z> [Lo =2 ‘oL =z Z>[ ol =2 Lo =2
1 . 2 3 1 2 3
o N 0
0 e 12 1.201o 1.2 1.2
z2(+=28) | Z22>( ~-=8)
1 .‘l 1 1
1 @ 1
o ‘ o
ZT>(+=>6)._ > ( —=§6)
1 20 | 2
2 2
o o
V &bz =z V &2 >3z
o 12 4 o 23 s
) 1
1.3 1.2 141 1.3 1.2 14
z 20Aaz <Llooonz >0 Az < Looo ) = 1z
4 4 5 5 6
14 14 , 14 14 o
/ to
z > (z,2,z ) >R " (2z.22z) =R
6 444 0 1 555 0
o1l 2 0 S 1
o 000 1.3, ;‘ coo 13
] 2 ! o
z = LLL = Fin z+t 1=z K
1 1 t

‘Meaning of the intermediate values :

N
Hv
]

auxiliary value for the variation of points

Z,y = horizontal distance between V and the next point.

M

vertical distance between V, and the next point.

‘ﬁ‘N
N
v
!

= coordinates of the point.

Zg = “ The next point is located within the field ™ .




~ The corresponding sets of points for the relations of other pieces can be similarily developed. For the

1L
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following the implicit expressions are at first sufficient.

The Point — Occupation

-

The points ( squares ) of the chess ficld can be occupied by pieces. In order to specify the state of

occupation the point notation is supplemented by an occupation notation. There are six types

of pieces (P Kt,B,R, Q, KJ )’ ‘of white and black color respectively. Any point may not be

occupied. Thesg 13-variations of the state of occupation of a point can be speclﬁed by 4 Yes —No-—

Values .

\‘~.

~e

1) Introduction of the * occupation notation ”

AA3

The code is represented by a hs

S1.4
BA3

@«

-

1}

\
N
.
t

0 1 2 3 Meaning
- - - = not occupied
+ - - - | -wp
-+ - - WKt
[+ + - - -]
- -t = | (WKg <
+ - + - | Jwr
-+ + - ‘W.B
+ o+ o+ - W.Q
(- - - + -1
t - =+ | fjgp
-+ - o+ | Skt <=
[+ + =~ + -1
- - + + | p8Kg
+ — + + | /S8R
- + + + |pSB-
+ + + + | 8o

2) Operations with Occupation Notations AA3 :

A number of propositioné on the components of the occupation notation

LW oo <

*“ occupied

The undefined cases are excluded. Thus we have the
restriction formula =

BA3 =

Wh- &~

* occupied by white

1 2 3
+ - -
- + -
— + . -

+ -

+ —
- - %
+ -+
- + o+
-+ 0+

+ 4+
+ o+ o+

V can be derived : |

(o]

~

~ v

3 OOWE T BBEMY ANA. e P T

Sepyve

g S P I A

N T ggtee e e ek

-

R T T

e
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Vio *“ occupied by black ”

Ki3
vV = + - —- o0 occupied by pawn
V = — + — o ” ” knight
V= U+ .-t o » ”  rook
V = T4 4. » ”  bishop
vV = + + + o ” ¥ queen
V = & - + (o) » ~ ” king

PA48 The adjacent points aré under threat

.. \\

VA(V~V)>RASS

Vi]o o o .

K| 2 o 1

S1 o o o o

PA.49  The orthogonal lines are under threat
VAV=RA49

Vio o

Kl o 2

PA.50 The diagonals are under threat

V AV =RAS0
Vio o
K o 2

PA.51 Occupied by a minor piece ( bishop, knight )

VA V=RASI
Vo o
Kl o 1

PA.52 Occupied by major piece ( queen, rook )

VAV=RAS52
o o
Kl o 2

<

PA.53  Occupied by a minor piece a major piece or a king

V= RAS3

V] o

K| 2

it

PR

T IR T RO Al S vI P

e W T e e R ek g s

A R A R R AT

R a1 A 2 B T
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PA.54 Occupied by a minor piece or a major piece, king excluded.

VAV vV=RA5
V| o o o - '
K|l 2 o 1 :
Relations between two occupation notations .
R(vV , vV )=R
\' [NAREN o
A A3 h3- o

~e

PA.60_ “ Occupied by pieces of same color .

VEOAVFOA(V~V) =>RA60,
V| o 1. . o 1
K 3 3

s

. . .
PA61 * Occupied by_pieces, of.different color ™ .
VEOAVH0A(VA4V) = RA6I
o 1 o 1

. 3 3

PA.62 “ The occupatioﬁ is equivalent ( if for instance bishop and knight are rated equivalent )
(oP( Kt B), RQKg )

[ ,\V,V) = ( V,V,V)] v [RASI(V) A RAS51( V )}= RA62

A" 0.0 0 111 o 1
K ol 2 ol 2 ' »
A 000 000 A3 A3 o

Alternate form of PA.62

Introduction of a valuation table in the form of a constant CAQ.1.

Comp. 0,1, 2 | Piece | Level CA0.1

of of

AA3 valuation
_ - - (o] (o] 000
+ — -] P 1 ooL
-+ —| Kt 2 oLo
+ 4+ - - 000
- =+ 1 Kg 5 LoL
+ — + R 3 oLL
-+ +| B 2 oLo
+++]Q 4 Loo

3 OOMI e B BAEY ANE TR R P

iy

a4

P P R T S VP
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EY RN
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[ ]
PAG2 ‘ A
(c ]——( V,V,v)) = (¢ l—( V,V,V.)) ‘= RA62 ‘
v AO.1° 000 A0.1 111 T A i
K ol 2 012 k '
S 1.3 000 13- 000 p
PA.63 'V, is univecally occupied superior to Vo ’
KAl .‘\"( V,V,V) <KA1l ( V,V,V) = RA63 ‘
Vi . l Q0 0 111 0 - - !
K : ol 2 7 012 I
S 1.3 000 000 0
3) The “ Point Occtipied Notation ” !
. ~ ¥
AM = ( AD2, AA3 ). . : . ;
LN \‘ .
Operations with the ** point odbcupied ” notation : H
£
R(V )=R i
\'4 o o é
A 04 o T
PA.64 . “Occupation is possible » . ;
[(V =t+—)> V =0]A[(V =+-—4> V= LLL|=RA64 =
A o o o 0 ’
K 0.1 l.o o.l l.o t
A A3 Al A3 Al . o
(‘A white pawn must not be located on points with the vertical coordinate zero and a black , -
pawn must not be located - on points with the vertical coordinate seven, ). A
Relations between two “ point occupied * notations.
R(V ,V )=R
v] - ) 1 o
Al M M 0 ; ‘
PA.72 dceupation condition for the move V — V
o 1 ‘
( V is occupied and V is not occupied or occupied by a piece of the other color).
o 1
VEOA(V =0v(V 4V )) =RAT2
Vi o 1 o 1 : °
K| 1 1 1.3 13"
Al A3 A3

o (o) [}

Y S ey S Pt

e e e g

-

—— e

S P I 2 il L

A s
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PA.73  Move condition, without consideration of the points located between V and V.

~

> = > R < =

~

’.‘_

B = +—— RAI2Z(V, V) T
0 ' o 1
1 (o} o
[ 1.3 62 A2
'V =+—+ RAIB(V, V) T
0. o 1
1 0 o
L 1.3 A2 A2 -
V. = —+—0 RAIO(V, V) 7
"o Q 1
1 . a o
L1370 22 A2
[V = —40 RAIT( V, V j
o ' o 1
1 o o]
137 A2 A2
[(RA49 (V  )ARAS( V, V) 7]
o o 1
1 Q o
L 1.3 A2 A2
CRASO (V. )ARAS( V., V) 7]
0 o 1
1 o ]
B 1.3 A2 A2 |

o 1

BLP

Kt

Kg

B,Q

= RA.73 WhP- -

3 TET TR SRy ek TR e P

]

"

s a

At e WS g st

W R e oA
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e B T g e

S aat

g o
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PA.74 Capture — and guard condition respectively, without consideration of the points located

between V and "V .
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= RA.74

0 1
[TV = +— RAI4(V, V)T
v o o 1
K 1 o o
A [ A3 A2 A2 ]
TV = bt RAIS (V, V)]
\'% o o 1
K 1 o o
A | A3 ‘ A2 A2
[V = —+—0 RAIO(V, V)]
\' o ’ k 0 1
K L * ,“\0_ 1]
A L A3 A2 A2 ]
V. = —+0 RAI7(V, V)]
\Y% ) o 1
K 1 0 o
A L A3 A2 A2 ]
[RA49(V ) RAB(V, V)]
v o 0 1
K 1 0 0
A L 1.3 A2 A2 ]
[[RASO(V ) RA9(V, V)]
v o o 1
K 1 o o
Al L 1.3 A2 A2
PA.75 * En passant ™ capture condition
V, = point of the pawn
Vi = point to which the pawn is moved

<
[\
]

point on which the beaten piece is located

BLP

Kt

Kg

R,Q

g
3 ITMIR TR B PEEN ABA PP VI B

evn

R aa

Y R T e

P g T S

»
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L]
R(V, V, V)=>RA7S
\" [+ 1 2 (o) z
K M M N 0
- “'g i
V. = +——AV = 00LAV = oLLARAI4 ( V, V) A V
\Y o o 1 o 2 2 ‘
K 1 0.1 ol o (o] 1371
Al a3 Al Al A2 A2 0
[V "= +34AV = oLLAV = LooARAIS(V , V)aV £ 0 A V ‘
v o o T o 2 2 2 !
K 1 0.1 0.1 0 o 1 1.3
Al Las Al Al A2 A2 A3 0 t
iy .
A(V =V )YA(V =0)=RAT
A% o 1 : { .
K 0.0 oo - %
A Al AL A% . o

0 .
3 TR T SRS AJe P WX P

IIl. The Field Occupation

PR

1) Introduction of New Structures

-

‘The list of the occupation notations AA4 assigned to the 64 points of the chess—field is the
“ field occupation ™ . ' v ¢

AAS = 64XAA3 F
It is advantageous to introduce another notation which consists of the field occupation notation, ¢
supplemented by the coordinate notation of the points. }

The list of pairs of this point occupied notation is of a restricted variability. ( The front elements
of the pairs are constant )

AA6 = 64XA A4
BAG6 , !
V =i = BA6
K i.o ' !
Al & 1.6 '

Alternative formulation :
AAG6 = Q. ( AA2LAAS )

The start occupation is specified by the constants.

CAS; (AAS) and ' ;

CA6; (ALG)

T e Byl g mar t S e R we e ety

s R E Y T T

e
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-
-

CAs6 Meaning
AA?2 CAS point piece
- - + -+ — al Wh.R
+ - — - - —_t - - bl Wh.Kt
-+ = - -+ + = c Wh.B
O + + + - d Wh.Q
—_— \'::',___ U el Wth
+ -t - — + + = fl Wh.B
—t + —_—— - —_ 4 — = gl Wh.Kt
++ + . + -+ = h1 Wh.R
- — At - - + - — — a2 Wh.P
+ o+ o+ + - - - - h2 Wh.P

) ‘\ i
Sl IR St .
+ 4+ + + o+ o+ + —+ + h8 BLR

In certain problems, the

of each type avaiable.

First a constant CAQ.2, which consists of the list of the different types of pieces, is required.

C
Vv 4£0.2
A 12XA A 3

To the list AA7 can be assigned by ‘horizontal composition

AAT7

entire field

L

|
+ + +
+ + + +

-+
|
|

|
+ + + +

12XS1.4

]

+ + + + + +

-

: Meiining

0N ¥ kit~ N

Wh.P
Wh.Kt.
Wh.B.
Wh.R.
Wh.Q.
WhXg.
BLP.
BILKt.
BL.B.
BLR.
Bl.Q.
BLKg.

The composition with CAO0.2 results in the list of pairs AA8 '

AAS8

'Qz (C 002, AAT)

occupation is not of interest, but only the number of pieces

,
3R e P BENN mRA G PN P

e vy e ke,

~—
A R et e AR

> pa >
e

oo

B

~perpa
e
L 3



~ The state at the start is represented by the constants CA7 and . CA8 :
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CAS8
Meaning
CAO0.2° cA7

0123 3210 piece number
t == Looo WhP . 8
-t —-= - ooLo WhXt. 2
-t ooLo Wh.B. 2
¥ -+ = - oolo Wh.R. 2
+ + + - oooL Wh.Q. 1
-=+ - oooL Wh.Kg. 1
+ - -+ o Looo BLP.. - 8
-+ -+ - ooLo BLKt. 2
-+ + + “goLo Bl.B. 2
+ -+ + . goLo BLR. 2
4+ 4+ " oooL BLQ. 1
- —+ 4 oooL BlL.Kg. 1

2) Operations with AA7

PA.96 Development of AA7 from AAS

R(V )=R
\'% o o
A A% A7
wi N[R(x €Vax=C ) =R

\4 o A0.2 o

K i 1

A A3 AS A3 14

Propositions on  AA7

R(V )=R
\"/ o o
A A7 o

PA.97 The field is completely occupied

( V=C) = RA97
o A7 o

PA98 The occupation'is partialy as at the start or equal to it.

Wi V <C |= RA.98
A" 0 A7 o
K i i

S 14 14 o
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PA.99 Number of white and black pieces :

R(V )=(R , R )

v o o 1
A A7 L™ LS
,RO = number of white pieces
R{ = number of black pieces
V4 V4Vt Ve V2RAD | V4 V+V+VHV=RAY
Vio o 0o o0o" o o {o o o o o 1
K

o 1 2 3 4 6 7 8 9 10

PA.100 Number of\'redundant minor and major pieces relative to start occupation.

R(V )=(R ,R )

A% o » o ' _' 1
A 87 T4 14
Ry, = redundant white ;'ninor and major pieces
Ry = redundant black minor and major pieces
Fpos ( V-Lo ) + Fpos ( V-Lo ) + Fpos ( V~Lo ) + Fpos ( V-L ) = RA.100
.0 o 0 .o o
1 2 , 3 4
Fpos ( V-Lo ) + Fpos ( V--Lo ) + Fpos { V-Lo ) + Fpos ( V-L ) = RA.100
o . 0 o o 1

7 8 8 4

PA.101 * Occupation is possible with regard to the exchange of pawns ” .
Detailed conditions

1) Both kings are present
2) Number of the white pieces < 16
3) Number of the black pieces < 16

4) Number of white pawns < 8 minus the number of redundant white minor and major

pieces

5) Number of black pawns < 8 minus the number of redundant black minor and major

pieces

6) Number of pieces at least eqal to 3.
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PA.102 White is equal or superior to black in any type of piece.

\4
A

(VE2V)Aa(V2V)Aa(V2V)A(VEV)A(VR2V)A(VEV)=>-
(o]
1

o)
[}

R(V
(0]
A7

(V=L)A( V=L)A( RAI9(V) < Loooo)A( RASI (V) < Loooo

0
5

A(V <Looo— RA100( V)) A ( V < Loco— RA100( V))

-0
o

A RASI (V) + RAOI(V) >LL = RAIOI

(o]

L. ‘\
R(V ) =R&I02,N

0
A7

0
6

) = RA.101

~

A

o .

“

[s)
o)

o
11

- 0

o
o

[ I

1

1

o
7

e

0

o

(o]

o
2

_220_

(o]

0
6

(+]

o
3

PA.103 Corresponding specification for black.

PA.104 ,Inivocal superiority of white according to the valuation of pieces in table PA.62

Since there is always only one king of each color present, the other 5 types of pieces

only are relevant :

'P,Kt, B,R,Q,

These are divided into four value classes :

P
Kt,B
R
Q

For the values a, b, ¢ and d only the following is fixed :

a
b-a
c—b
d—c

4 .
According to this detemination superiority can be identified in some cases.

>

>
>
>

Ao o

0

0
0
0

1

1

(o)

o

10

(o)

-

Ay o

)

etk e gy we e e iy,

vy

Peh s R At M Pl PR B e T S Bl @ s

~ P
ER
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*A.102

et

B

If a, 8,7, and & are surplus, respectively the types of pieces a, b, ¢, and d in white are

deficient then the valuation of white produces the following result.
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X=aXa+tfXb+yXc+dXd
x =qa X a 4 , !
tf Xa + g X (b-a) . e i
ty Xa + ¢ X(b-a)+ gy X (c-b) » *
+6 Xa +8 X(b-a)+8 X (cb)+ 86 X (d—) ‘
x=(a +B+y+85) Xa
+ (B tyts) X(b-a) |
(')""5 ) X (c-b) ' . : R
TP X (de¢) - ‘ X

If x > o, then at least one of the following expressions must be positive and none of them
is allowed t;g be negative. t

(a+tf+5+8) :
(B +y+ 8,\) o : - ;
‘ ‘ (§'/-*‘,5"N) o 3
5§ i
Fhis results in the following program : é
PA.104 | -
R(V ) =RAI04 ‘ ’ }
\'% o) : ) o ) .
A A7 o '
V-V=2 z <Q = Fin z>0=>VR
‘V o o o [ |1 o~ o F
K 4 10
"l z + V-V=2g 2z <0 = Fin z>0=VR 4
V| o o o o ' o
4@ K 3 9
+V+V-V-V=z z <0 = Fin z>0=VR
Vio o o o o o 0 .0 o
K 1 2 7 8 _ !
z+V-V=g ’ 2 <0=Fin | z>0=VR 1
VI o o o o o o o
K o 6

PA.105 Corresponding program for black exchange of :

V,VI|V,V|V,V|V, V|V, V]|V,
] o 0 (s} 0o (o] [o] (o] 0
611 712 8|13 9|4 10

o
(=]
=]

[«

¥
—
—

.ty e e

RO,

B e
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.
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3) Operations with the Field Occupation ( AAS, AA6 )

r

The following programs sometimes contain repetitions and implicit partial expressions. Consequently,z‘
they do not always show the most convenient solution for computation. T i
. 2]
PA.128 “ The move form V to V is allowed ” .
. 1 2 1
R(V ,V , V )=RAIS
\"% N L2 o \
A AS 0 AZ-- A2 | o ]
(V , V=V )=z {(V ,V~V )=z .
Vil o l L -0 2 o l 2 1 ‘
K “ : i’ '
Al A2 A3 A2 T M A2 A3 A2 M .
N “ T » d g
RAB(z ,z 3 )¥(RAM(z ,2z )Ia(zt 2z )) :
[P ¥
\Y% 0 ‘1 AN 0 1 ' 1 ?
K : | 13 13 B
A M fa% M A% o 0 * ;

l/\[RAl9( 2z ,z )f(x) @ERM2(z,z ) V =0) =~Ral28

\'4 0 1 : o 1 0 / ;
K o o ' o o p : '
A A2 a2 L A2 A2 a3 | ‘
Vo = field occupation ( AAS ) V o (p
Vi = point from which the move starts ( AA2 ) 1
V, = point to which the move is made ( AA2) 3
Z, = the point occupied notation ( AA4 ) 3

assigned to V,

Z, = the point occupied notation (AAd)
assigned to V2

X = point located between Y and ;/ ( AA2)

Between‘ll and \2/ either the move condition RA,73 is true or, if \l/ and \2/ are

occupied by pieces of a different color . ( % + % ) the capture condition RA.74 !

1.3 13
is true and, if there are points located between V and V ( RA.19 ), then these ( RA.32)
must be unoccupied (V = o). 1 2
)

X

PA.128 does not take castling into consideration since this cannot be supervised simplyon
the grounds of field occupation. ‘ !

N
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PA.129 “ The piece located in point V guards the point V or attackedfit. ( It can capture the |

As PA.128 , however, instead of the expression

RAT3( z, z) v (RATA(z , z) A (z $2))

o) 1 o 1 o 1
) 1.3 13"
is 'su-bs't‘ituged -
Ra74 (27, z )
o] 1

of check uncovered :

R(V ,V ) =R

Al

piece of the opposite color, if‘1 there is any located in }’) .

-

PA.130“A certain :piece exists, which can move to Y conditionally ” ( possibly restricted because

e

RPN PR U

Pl oY S BpradtF ¢ awartd

RN At PP VT S Tl

i g

et

\% o ls‘.“.,'c}}‘
K A6 A2 o
( Ex )IXEVAXx+0AXARAIZB(SpI( V) x, V)= RAI30
\Y o ’ ' o 1 o
K - 1 1.3° o
A a4 a6 A3 0 AS a2n2 o

3O TR M FOWY ANA SR SVE B

PA.131 As PA.130, however, for black

. X - instead of x ¥ 0A X
K 1.3 1.3

PA132 “ The point Y is conditionally guarded, or attacked by white ” .

As PA.130, however, RA.129 instead of RA.128

PA.133  As PA.132, however, for black

X instead of X ¥ o0oaAX
KI 13 1.3

If Y _is occupied by black, then follows :

RA.130 ~ RA.132
If \1/ is occupied by white , then follows :

RA.131 ~ RA.133

The same is true, if Y is occupied by a minor or major piece.

PA.134 “ The white king is in check ”

Supposition . The occupation corresponds to PA.101
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R(V ) =RAI134
v o o , . .
A X o ] . .

X[ x€ Vax =( —+=)]= z RAI33Z(V , 2z )= R AI134 |
v o] -0 0 o
K 1 ' "o
Al M ] L6 M A6 A2 o

o .
PA.135 * The blaek. king is in check ”
As PA 134, however x = ( —++)

and PA.132, instead of PA.133
)

PA.136 The ficld is transformed into the field R by the move Y - X

Supposition : Mb\je Vi— V s allowed . g
S !'*\

R(V ,V , V)= RAI13
v o 1 2 0
A A6 A2 A2 H6

V=2 Vl=' z Vi'|] 0= 2z V.1 z=> RAI136
v ’ l 1 o
K
Al A6 H61 A3 A3 A6 D6

PA.137 The field V is transformed into the field R, by en—passant capture
0
R(v , v ,v , Vv )=R

A o 1 2 3 o
K 426 42 42 a2
Supposition @

RAIS (V —V, V=V, V=V )
ARRIRANEE
K
A M N2 MO NN

Vi= 2 Vl 0= 2z V.1 0= 2 V.1 z = RA.I36
\'% l 1 o . 3 o 0

Al &6 261 A3 A3 A6 D6

~

‘The program PA.140 to PA.143 correspond to the programs PA.130 to PA.133 : but
the case of a check being discovered is excluded. A meaningful occupation according to !
PA.101 is pre-supposed.

~—
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R(V, V) =R

A
K

>R <

PA.143

o 1 (o]
A6 A2 )

- PA.140 A white piece exists which can be moved to V without a check resulting ( if a black piece is

1
located there, this can be captured ).

The program must contain the condition, that a white piece exists which can be moved to

V ( PA130 ) ‘
1

By the cgqslition, that in the game situation after the move

»
AVl .

TRAI36 (V, x, V)
A" o 1
K 0

@ 4

the white king is not in check the case of uncovering check is taken into account.

The formula is set up ﬁr'st\without regard of en — passant capture.

1
~

N P Y
Ex )[x€Vax#0AXAaARAZB (Spl (V),x, V)
0 g o 1
-1 1.3 1)

% a6 A3 o AS A2 A2

A RAI34 ( RAI36 ( V, x, V))]|= RAI40.0

o 1
A A2 A2
AsPA.140, however, for black
X instead of x¥VaXx
K] 13 A 1.3

RA.135 instead of Ra.134

“The point V is guarded by white or attacked ” . ( The guarded or attacked piece is not
1 . ,

arrested because of uncovering check )
As PA.140.0, however, RA.129 instead of Rp.128
As PA.142, however, for black

X instead of X=0 A X
K 1.3 . 1.3

RA.135 instead of Ra.134

Regarding the identity of the programs PA.140 and P.142, respectively PA.141 and Pa.143,

the same is true of the programs PA.130 and PA.133 (page 723 ).

A

) .
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4) Programs on the Freedom of Pieces to Move

Supposition : V is occupied
1

R(V, V) =R
\% o 1 0
A AS A2 o

PA.144 The piece located in V can move conditionally ( possibly it uncovers check )
« . 1

CON .
~
AV e .

( Ex J[RpI28 ( V, 'V, x )]= Ral32
o 1

> R <

A2 AS A2 A2

PA.145 The piece located'in V ‘can move without uncovering check.
N \

a ‘.\

~ P
' Ne( V)= 27| V V=2
v o o | o0 ‘ 1 1
K
A AS A6l A3 A2 A3
z »[RA134 (z) A ( Ex )[Ral28 ( V., V, x )aRAI34(RA136(z , V, x )
Vil o o 1 . 0 1
K|3
Alo | ) A2 | _ AS A2 A2 A6 A2 A2 ]
z »[Ral135 () ( Ex )[Rpl28 ( V, V, x )aRaAl35(RA136(z , V, x))]
V|1 o o 1 o 1
K|3
A B N6 L AS A2 A2 N6 A2 A2
Vo = start ficld occupation
Z, = start field occupation, supplemented by point notation
V] = point to be investigated
x = point to which the piece located in V may move.
1

RA.136 ( Z, V,x ) field occupation after the move
ol

roo

1
3 ‘ 3
be separated.

P d
R I xR I R R A Y

R R e i M 7 Ly YOl 3

rerm
e

o
e

3 OSTNER TR N SN RE. R YT P

The cases, that V is occupied by white\'( Z )" and that V is occupied by black(Z) must
: 1 N g 1 1

A



PA.146 The piece located in V' can be conditionally moved without being attacked in the new location

> R <

> R <

E
z : | b
1 e ;
5 .
— | —— 7y 5 T
A 2> RAB(RAI6( z, V, x )T =» R-d'{%» “/
1 : o 1 ' ' |
-l L a6 A2 A2 | P
_ , r P
vlz-> Rp142(RA136( z, V, x )] : f%//?{t// !
11 : oo 1 . ; £
o 86 a2 2 | AR
o 1F B
v . &
PA.147 The piece located in }’ can move withoﬁt uncovering check and without being attacked in the ; ‘

> m <

T

> R <

RS

O W = Np .

O W = N

1
(possibly it uncovers check).

Ne(V)=12z |V -V =
o] olo ' 1
AS a6l a3 a2
(Ex) [ RAlI28(V, V, x)
) o 1
N
TS A2 A2 -
A\ . :'\
K .
A
i A
v Ut "\\,‘

position.
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PA.147 rg:sults from a combination of PA,145 and PA.146

Nr(V) =z V=V =z
o 0 o‘l 1

a5 6| M3
[(RAI34(z) A (Ex)

o
06 A2
{
N
I/"""'”‘-m"—"w "'.‘» '
> FRAI3S(z) A (Ex)
o

76 A2

A2 A3
™ RAI28(V ,V ,x ) A RAIZ4(RAI36(z,V ,x )
o 1 o 1
e DS A2 A2 06 62 A2
ARAM43 (RA136 (z ,V ,x )
DR o 1
i A6 A2 A2 i
™ RpI28(V ,V ,x ) A RAI35(RA136(z ,V ,x )]
o 1 o 1
AS A2 A2 A6 A2 A2
ARA143 (RAI36 (2 ,V ,x )
o 1
ad A2 A2

—

o

N N gy e

Ny

.

.-
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:
" 4
b
PA.148 The white king can move without getting into check. ’ |
Supposition : Occupation corresponds PA.101 y E
, 3
R( V) = Rpl48 e e |l
A o 0 : . -A
A A6 ) ‘ :
*
X XEVAX= —t=2z 2
A% o o .‘:
K SN . .
A} pd AT N Ad I i .
(Bx )[x €V RAl7 (z, x)ax=0vxaRABI(RAIB6(V, 2, x),x }
v o o o o
K “ o o 17 1.3 o o ‘Yo
A X Y A2 A2 N6 A2 A2 %
N . .\ - P :
SRR = Rpl48
Vo = field occupation'at the start A ;
Z, = point occupation notation for the white king. é
« Therc isa pointx adjacent to the point of the white king  ( Z ) , which is not occupied )
( x=0) orwhich is occupied by black ( x ) and in the resultmg field occupation t
1
3 .
(RA.136 ( ...)) the point x is not attacked by black ("RA.135 )
PA.149 As PA.148, however, for the black king. ;
X = ——+tt instead of x= ——+— b
¥
RA.132 instead of RA.133 ;
PA.150 “There are no white pieces present apart from the white kmg or these cannot move *
@ ( Supposition for “Draw ™).
"R ( V) = RAI50
A o !
A A6 o ‘
(x)XEVAx#OAx#—--—+—./\i'->RA145(Spl(V),'x) ,
v o o
K 1 1 13 o
A N A6 A3 A3 o AS A2
PA.151 AsPA.150, however, for black . ’ J
x ¥F —H A x insteadof x ¥ 0 A X ¥ —+— A X ‘

Ki1 13 1 1 1.3
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PA.152 A certain piece exists, which may move to a point between }’ and \2/ without

uncovering check.”

R(V, V ,V )= RalS2 © o F Rp8(V, V)V RV, VY,
Vv o 1 2 N ‘ o 1 o 1
A b D2 O2 0 '

Supposition :*V and V are located on a straight line,
_‘ ~ 0 1
N . i

( Ex )[XEV-n x €ERA32( V, V) A RAMO(V, x )]= RAIS2
v ' o] ' ) o 1 o
K ) .
A M A6 A2 A2 A2 ] A6 A2

PA.153 As PA.132, however, for black
RA.141 instead of “RA.140
R o, ".'.x
5) The conditions for *“ Check” and *Draw”
PA.160 R(V )= (R , R ) V = Field occupation
v 0 0 1 o
K A6 ° ° R = white king is mated
o .
R1= white king is drawn

X (X€Vaxs=-—t)=z '
v o ‘ 0
"K 1
Al m4 06 &4 |

 (RAI9(V, x, 2 )ax )=z N(Z) = 2
\% o o 1 1 2
K o .o 1.3° N
Al M A A A2 o axXpg oXA4 1.2

z =0)vRA148( V )= Fin
Vi 2 0
K
Al 12 A

(z >2)v[ RAI42(V ,z ) A (ROI9(z ,z )VRAIS2Z(V ,z, z )]z

v 2 0 1 o 1 0 o 1 3
K 0.0’ 0o 00 o 0.0
Al 12 A6 A2 VY] A6 A2 A2 0

RAISO(V)=>zA zAzZ= R| zAaz=> R
\" o 4 3 4 o 3 4 1
K ‘ '
A A6 o o o ol o o o

-
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Meaning of the intermediate values :

Z, = point occupied notation of the white king
Zl = list of the point occupied notations form which the king is attacked. - ‘ . %
22 = number of pieces attacking the king

Z; = * The white king is attacked by double check ( Z > 2 ) ,

T, 2
or 1t canmexther capture the attacking piece, nor can it be guarded by the mterposmon'
of 2 piece between the kmg and the attacking piece ™

Zy = no piece \other than the kmg can move.
.161 As PA.160, however, for black
X = ——t in;téqd' ‘%f X = ——t-
R A.149 «“ = RA.148
Rp.143 « % Rp.142
-Rp.153 “ “ Rp.152
RA.iSI « *  RA.150

V. The Game Situation

1)

To
To

Introduction of new Types of Data

The field occupation information alone is not sufficient for the specification of the game situation.

The following supplements are required :

a) Information as to whether white or black has to move

b) Information about the execution of castlings

¢) Information, as to whether it is allowed to capture en—passant
a) This is specified by a single Yes—No—Value.
b) The conditions for castling are the following :

a) The points between king and rook must be unoccupied. -
B) The king may not pass any point which is under threat by the opponent.
v ) Castling is not allowed if the king is in check.

8 ) The pieces involved in castling must not have moved in so far.
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The conditiona «, §, ¥ are functions of the field occupation. For the condition § the
knowledge of the course of the game so far is necessary. In order to avoid inclusion of the
entire course of the game in the calculation every time, four Yes — No — Values are
evaluated, which indicate whether white or black is allowed to execute king's side or

queen’ s side castling. These four Yes — No — Values are components of the game situation.

To c¢) This information results from the previous move. It is sufficient to specify the point to

‘
K

which the piece was moved. This information ( AA2 ) must also be a component of the
game situation.

Correspondingly the following structure can be assigned to the entire “ game situation ” :

AA‘ -(AAS So, Sl4, AA2)

The componerits have the following meaning :

Ko ( ApA9 ) = ApS,

Kt ( Ap9 )= So,

K2. (AA9) = S1.4
\

) K3 (AA 9) = A A 2 pbint to which the lasf pié;:é Vrrlx;)-w;ed. At the ‘start a.nd aftef -a”céstli‘ng thns o

The start situation is specified by the constant CA 9.

Indetaill - Sy

K20. = So

K21 = So
K22 = So
K23 = So

is zero.

Ca9 =( CAS,— ++++,0)

field occupation

— * white has the move ”
+ “black has the move ”
Castling information

“ white may execute queen’s side castling ™

" "

“plack "

” "

"

"

”

king’s

"

queen’s ”

kmgs

”

Here again it is advantageous to introduce the data structure AA10 in which the component AAS is
replaced by AA6 (field occupation with specification of the points ).

Ap10=( Ap6,50,514,An2)

The start situation is specified by the constant

CA]():( ACG’-3++H;O )

For the data A A9 and AA 10 various restrictions apply, since not every variation is meaningful

see PA.192.

.
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"
A move is specified by the followmg data
a) Normal moves )
@) Point from which the piece is moved !
B) Point to which the piece is moved : ST e i
b) Castling : Queen’s side or King’s side
'
¢) En—passant capture: information as to whether capture is executed ‘/"

Toa) Itis usuaJ to mention the movmg piece and to mark the case of capture ( x ). Somﬁenme
the captured -piece is reported too.
The case of announced check is reported specially.
These supplementary data are redundant since they result form the game srtuatron

To. b) Castlmg is pormally marked by special symbols. In principle it is sufficient to mention the
points between which the king is moving. Since only in case of castling is the king allowed
to move over two points, this fact is sufficient specification.for castling. -

-

To ¢) If the captured pi'ec_:e is:\‘repdrted in any case, then a special specification is superfluous.
< PP .

Two types of move data will bé used :

The concentrated move data : AA.11

This contains the necessary data only.
AAl = ( AA2,AA2, S0 )

Meaning of the cemponents:

Ko ( AA1l) A A2, point from which the move starts

Ki ( AA11) A A2, point to which the move goes + - -

K2 (AA1l) So, *“ Capture is executed .

K2 is only relevant in the case of en—passant capture The specification of castling is established by
- the following data : :

a) queen’s side white castling 000,Loo/oo0,0L0
b) king 5 " »Tow | 000,Loo/oo0,LLo
¢) queen’s ” black ” LLL,Loo/LLL,oLo
d kings's ” 7 7 LLL,Loo/LLL,LLo

As well as the move data AA.11 it is possible to introduce extended move data AA. 12,, but this
will not be discussed.
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2) Operations with AA9 and AA10-

PA.192 * The game situation is meaningful

PA.192

A%
K
A

>R <

> R <

The following conditions must be satisfied :
1) The positions of the pawns must satisfy the conditions of PA.64 ( .12 ). "

2) The number of the various types of pieces must satisfy the conditions of
PA.10T( Z ).

3) The two kmgs must not be in check simultaneously ( Z)
4) A kmg must not be in-check more than twice .

5)Kfa king is in check then its color must be equal to the color which has the move

(Z).

6) Ifa king-or a took is not in its starting f)osition then the corresponding components
of K2 ( AA1L0. ) must be negative ( Z) .

“

TNHIFK3 (AALD ) is .net equal to zero, then the corresponding point of the field must be
occupied by a piece of the color which does not have the move ( ; ).

With PA.192 not all impossible cases are excluded. If for example ‘at the start knight and
bishop are exchanged, then this fact is not compatible with the rules, but it is compatible
with the above program. : .

The condition for two bishops either white or black is omitted.

(x)(xe V- Ra64 (x )=z | RAIOI[RA%6 (Spl (V )T = z

0. 1 o 2
o' o
06 M o La7 A5 a6 0
X( XE Vax=—+-)=z2 | X (XEVAX=~—t+)> 2
o 10 o 1 11
0 1 0
A 86 A3 M| A M6 B3 M
X ARBIZI(V ,x ,z )] =z
- 0 10 |; 12
1.3 o 0 © | {
o 86 482 Azi { Ln
er(x#OAiARA129(V,x,z N =z
0 11 13
1.3 . o o o

v} o A A2 A2 ‘ Ln

[

Nk

—
R L B Ll AL TR

L]

B aaah P T ey T
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“ .

z =0)=2z |(z<Lo A z<Llo )=z
13 3 12 13 4
1.n o 1n 1n o
V)a(z #0->V) =2
o 13 o 5
1 |
0 1n o 0
+—+— )= 2 (Vv = ——t-)=z
14.0 0 ' 14.1
0.(coa,Lo0).1
o A3 o
i) sz (V= aem) =g
‘142 o 14.3
o0.(LLL,000).1
o A3 0
;‘."_"_.-H-') =z (V T2 4+ ) =z B
144 o 14.5 )
o.LLL,LLL).1 ;
o A3 0

V»zaz JA(V 2zAz )A(V 224z )a(V 2z2az )= 2z

( z =0 v
v 12
K
A 1n
(z %0~
v 12
K s
A la " R
v -
\Y 0
K 0.(000,000):1
A N3 U
(v =
v 0
X 0.(ooo,LLL).1
A A3
A" o
K o.(LLL,Loo).1
A A3
Vio 14.0 14.1
Kl 2o
Al o o 0.
V+0-~>[(V
VI o o
K| 3 o
At A2 o
To PA.192 :

o 141 14.2 o 143 144 o 144 145
2.1 2.2 _ 23
o o o o o o o o o

ZAZAZAZAZANZAZZFR

Vi3d)~ Vl]= 2z
J 0 711 2 3 4 5 6 71 o

1

o olo o o o o o o o

Meaning of the intermediate values :

Z

to Z7

Zig0t0 2145

Conditions according to page 7233

point occupied data of the white king

13 13 (1] “ (13

black
number of pieces attacking the white king

(14 € (13 (13 (13

black “

Information as to whether rooks and kings are in start position.

6
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PA.193 Possibility of castling for white
R(V )=(RR) R,= queen’s side castling possible
) ol -~
Al0 00 Ry= kings “ * «“
(V  =—t-)A(V =0) A~ (V =0).
A" o . - o o
K 0.(0,0).1. -, o 0.(0,1).1 0.(0,2).1
A A3 - A3 A3
AV = p)ARA133 vV, (0,2)ARAIZB(V, ( 03)=> 2z
A" o @ o , o o
K 0.(0,3).1 - o 0
A A3 _ y " A6 A6 ' o
* \
N
(v = ——+—-)ARAIZBI(V, (04)) =2z
\'/ o ' s} ) 1
Ki o(od) v 0
Al A3 A6 ‘ o
(v =0)A(V = 0)A(V = 4eto)
VI o 0 o
K| o.0,5).1 0.(0,6).1 - 0.(0,7).1
Al A3 3 .. 03
ARAIB3(V, ( 0S)ARAIZZ(V, ( 06)= z
\" o 0 2
K 0 0
A 06 06 o
z Az AV=>R zZAZ AV =R
Vo 1 o o1l 2 o 1
K 20 2.1
Al o o 0 o) () 0 o o]

- PA.194 Corresponds to PA.193, however for black

PA.200 Development of the new i game situation form the previous game situation and the move

notification:
Supposition: meaningful game situation and move allowed.

R(V ,V )=RA20
\' 0 1 0
A AlO All Al10

~—

R daia 8

'
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The program has several parts:
a) Normal moves, according to PA.136

b) En—passant capture:
The criterion for this is :

~ 236 — -

The moving piece is a pawn. This moves two steps straight ahead and is captured.
As well as the normal variation of the game situation by the movmg piece, the captured

pxece must -disappear from the field.
\.

c) Castlmg ISR
The criterion for this is:

The moving piece is a king and this moves sideways in its rank two points. The color of the

king and the direction of its move specify the type of castling. As well as the normal
variation of '{he game situation by the moving kmg, its variation by the participating rook

has to be observed

2) Notification, wheth;nWhige bf{ black has the move ( X )

1

3) Develoément of information as to whether castling is allowed:
The data V is tranferred, if the moving plece is neither a rook nor a king. Otherwise the

0
2

corresponding variation has to be performed,

4) The third component of R results form the point to which the move was executed.

Al Al L

o
PA.200
V=12 2 V =z z =z V.1 0 =z V.l
Vi o o o ' 1 1 1 o l 1 o ’ 1
Kl o s} 1 1 o
Al A6 A6l A3 A2 M A3 A3 A2 A3 A2
2z =t—0 A (|V — V| =Lo)AV]> o= 2 V.1
v 1 1 1 1 o’S- 0
K 1 1.1 o.1 2 3
A A3 Al Al o_i A3
z=—4+—A(V =V =lo)>»r0= z tet= 2
vii 1 1 0 , o
K| 1 oo lo (0,0).1 (3,0).1
Al A3 Al Al 3 a3 A3
2 =—A-A(V -V =Lo)2[0= 2z t——=z
vl 1 1 0 0
K| 1 l.o 0.0 (7,0).1 (5,0).1
Al A3 A3 A3

normal moves

En—passant
capture

Wh.Q.side
'Castling

Wh.Kg. side
-Castling
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Z=-——++A(V Y4 =L0);—> 0=z
v L1 _ :
K 1 oo lo (0,7).1
Al &3 A1 Al A3
z=——tA(V —V =lo)> [ 0= z
V] 1 1 S
1 lo o.0 [i (7,7).1
Al A3 Al A3
Voa F’ (€Copo ), +—~+—) A z = ——t— =R
VI]o 1 o
K 2o 1 2.0
Al o MM o\ A3 0
Va z=(70)+++-)az =—+-=R
A" o 1 ' . 1 : R
K| 21 R o1
A M A3 .
V A Z2=(07) 4 )Arz=—+=R
v 0 i . 1 o
K| 22 1 2.2
A o MM A3 o
VA z=(17),+4)az =—+=>R
v [+ 1 1 o
K| 23 1 23
Alo MM A3 o
z =R|V=R| V=R
v o o o 1 o
K ol 1 111 3
Al A6 261 o 0 A2 A2

Alternative representation of PA.200
Extraction of the “ move analyses”

PA.201 Move analyses

R(V,V)y=(R, R, R,
v o 1 o 1 2
A A6 All A3 o o
R, =  Moving piece
Rl = “ Normal move”

+tt = 7 N

3,7M.1

+—t+ =7

5,71

-

as a special program.

Bl.Q.side
Castling

ag .

BlLKg. side

Castling

Wh.Q. side '

Castling

Wh.Kg.side

Castling ~ °

BLQ. side
Castling

BLKg. side
Castling

Results

P

»

.
I BT R B BEWN ade TP I

.

-

Y B g

e T g e e 4

P

et



Ajo 0 0

PA.202 Development of the new game situation form the previous situation with the aid of

subprogram PA.201.
It is true : PA.200 ~ PA.202

R(V, V) =R
A" o 1 o
A A10 All - AlO

(o]

— 238 —

R, = “En—passant capture”

R3 = “Castling ™

Ry = Type of Castling

‘ VrV=2z |z=R |V V=22 |V V=g
Vio ‘ 1 o o o 1 1 1 1 1 2
K 0 B! l.o 0.0 1.1 ol
Al A6 A1l A4l A3 A3 Al Al 821 Al Al 82
LN .
z =+—oa( 2 = 2)aV=R.
Vio 2 1 2
Kij1 A 2 y
Al A3 8.2 o o
z = —+o V/\ lzl"‘.f _' >rr+= R} (z, z)= R
Vilo T a 3 o 1
Ki|j1 ’ _ 13 o
A 8.2 o o o
RAR=>R

Vi2 3 |
K

Wh.Q.s.C.
Wh.Kg.s.C.
BLQs.C.
BLKgs.C.

A N e et
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e e
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~The variation of the various cases of castling is represented by a combination of the meaningful’

values of the points involved in two program constants Cp,

and Cpy
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PA.202
V=2 z —V=>2z ]z =2 V.1 0=z V.1
V]| o ) 0—"1 1 1 O_J—l Jl
K| o o) 1 1 o
Al A6 A6| A3 A2 A A3 A3 A2 A3 A2
RA2I(z, V )=(0,0,22zz )
v L9 1 234
K Ceonl
A 06 Al Y oo 12
z»[0= z VI 0,0 = Cp 30| =0Cp
V] 2 (j—o 0,7 "o 1 3,7 1
K - 3° 7,0 5,0
Alo [ &3 ARRRA axa 2 57 4XA 2
Lt . ."‘:x
2270= 2z (Cp —z )| (4t V)=2z( Cp
Vi3 O’J‘ o l 4 . o o‘lr IJ
K : 1 -
A L A3 A2 1.2 o A3 A2
i W[Vaz=(C(t—FV)az=( ——V)= R
\" o 1 o o 1 o 0
K 2i i 1 1 1 2i
Al 1.2 o M A2 o A3 o o
z=>R | V=R | V=R
Vio o o) o 1 o
K o |1 111 3
Al A6 A6lo o |l A2 A2

PA.203 Superversion of the game
“ The move is allowed”
( compatible with the rules )
Data for check mate and draw

R(V,V)=(R, R ,R, R)

\% o 1 o 1 2 3
A A10 A1l o Ao o
Yo = given situation

move

<
u
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R, = = “ the move is allowed ”
Ry =" new situation
R, = checkmate ‘ -
to the color, which did not have the move *
R3 = draw

The program is composed of the following parts:

l)Mqu\ *aﬁ\alyses according to PA.201 (Z, to Z,)
2) Investiga‘t‘ibh as to whether the color of the moving piece has the move
3) Investigation as to whether the move is allowed
a) normal move ( Zi1)
b) en—r;;;ssant( Zip215) _
c) Castling . .

N A

4) Developemtst of ‘thes dew game situation according to P.202
5) Investigation for chetkmate or draw,
The condition , that sequences of moves may only be repeated twice at the most, is not

contained in PA.203. This can only be supervised by registration of all moves ( the whole
course of the game). ’

. —
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PA.203
RA21(V, V)=(z, 2,22,z )
A o 1 0 1234 * -~
K o
A A6 Al A3 o000 12
z~ V=127 .
VI o o 10.
K| 3 e N
Al o o _o - -
vz »[RAI2Z8(Spl (V ), V, V)= 2z
Vi 1 2 , 0 1 1 11
K o o 1 ’
Al o o CTONS A6 A2 A2 0
zZ oV ="z. N
Vi 2 Jo I o~ 6 {rr
K 3 .
A A3 A2 A3
z >[(V>RAIA(V ,VPA(V>RAIS(V ,V Yaz 2 0az~ V=2
vy 2 0 1 o o 1 o 6 6 0 12
K 1 o 3 1 o 3 3 1
Al o 0 A2 A2 0 A2 A2 . A3 o o o
z2{(Vaz> RAIOB(V )) A (Vaz—> RAIGB(V ))|=z
V]I 3 o} 4 0 o o 4 1 0 13
K 1 1 : 1 1
Al o 0 o o AlQ o o o Al0 o
AV A2 RAIA(V )) A (V Az-> RAI9% (V)
A o 4 o o o 4 1 o
K 1 1 1 1
A Lo o o Al0 o o o A10 |
RA202(V, V)= z (VARAMB4(z)) v(VARAIBS ()= z
v o 1 5 o 5 o S 14
K 1 o 1 o
A Al10 All AlO 0 A6 0 A6 o

( VARAI9 ( z)) v ( VARAI9S (z)) =R
0 S o 5 2
1 1 o
o Al0 o A6 o
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Zyy =  *the king of the color which just moved is in check in the new

situation .

( VARAIGO (z ) v( VARpIGL (z ) =R
o 1 ) o 1 5 3 5)
1 o 1 o
o o A6 o A6 o
zA(zAaz)vzaZ=R|z=R N
10 11 12 13 17 o | 5 1
) o o o o o | Al0O AlD
To-. PA:203 -
Meaning of the data : A
Vo = given situation
Vi =. move
- Z, = moying 'pi;ec_e
- * - ‘h-

Z, = normdl 4nove
Z, = “en — passant capture ™
Zy = Castling
Z, =  type of Castling

Z = gs.c. Z = ksc

4 4

1 1
Zg = new situation ,

| Zg =  piece moved in the previous move(through en — passant capturee[ )
Zig =  *“the color of the moving piece has the move ”
Zy; =  *“ normal move is allowed and or the condition for en — passant is
satisfied '

Zy5 =  “condition for en — passant capture is satisfied
Z5 = “condition for castling is satisfied. >

—n
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Ry =

The czise, mw}uch only the two kings survice ( Remis ) is not covered by the program.

4
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*“ the move is allowed »

_ * new situation ”

“ the opposing color is mated by the move *

*“ the opposing color is drawn by the move ” .

If only one knight or one bishop of one color, remains with the kings, this also results in

Remis.

c'\ .
The promotion of a pawn is missing in the program. For this purpose, the move data must

be extended.
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Types of Data and Constants

So = Yes-No-Values
Sln = Series of Yes-No-Values . el
AAl = §1.3 Coordinate

TAl. v
AA2 = 2XA_A1 = Point
ANA3 ="-81.4 = Occupation Notation

BA3 T . - v
AN = ( AA2, AA3) = Point Occupation Notation
AAS = 64XAA3 = Field Occupation

‘ ® CNS. Start Occupation ‘ ,

AN6 = 64XA M = Field Occupation with Evaluation of the Points

BA6 C.A6. Start Occupation

Ll N,
AA7 - = 12XS14 = List of the Numbers of Pieces
CA7. Situation at the Start
AA8 = Qz ( ChAo.2, AA7 ) = List of the Numbers of Pieces with Designation of the
Pieces; C A8. Situation of the Start
AN9 = (AAS, So, S14, AA2 ) = Game Situation
CA9 Start Situation
AA10 = V( A A6, So, S1.4, AA2 ) = Game Situation with Evaluation of the Points
CA10 Start Situation

ANl = (AN2,AN2,50)= Move Data
AAlL2 = Extended Move Data

.
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Other Constants

- CAO.1

CA0.2

Valuation Table of the Pieces
List of Pieces

R dch
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