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! ;  
Prcfactory Note C .. 4 . .  

.. ’ 1 
, C  i 

The “Gesellschaft fur Mathematik und Datenverarbeitung ( GMD ) mbH  Bo;ln ” has been in close C +  

contact with Professor.Dr.  Ing. Konrad Zuse ovrr a long period. In addition to a nulnber of contap’ts ,’ L” 
.. &/’ 

a symposium “ Viewpoints for the developmcnt of algorithmic  languages ” was held at  whkh Professor T 
Zuse read a paper bmlus ‘: Plankalkiil ” . i 

. ’ .  \ . 1 :  

I : b c  

.’, . 1 

I am particularly inxious  that the pblication of the “ Plankalkiil ” by the “ Gesellschaft  fur Mathematik 
und Datenverarbeitung ” should take  place at this  time and, hopefully, promote  further  interest in these 
fields of study. 

.. 

;+ I t ? t 
I .  

L . .  
L F. Kriickeberg 
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9 :  
Preface to the English  Version *. C 

‘ T  
+ ?  i 

. 4.. . 

The English Version  was published  in 197p’by the “ Gesellschaft  fur Mathematik  und  Datenverarbeitung f [ 
mbH, Bonn ”. My  Special thanks  go to Dip1.-Ing. Gerhard Overhoff for the assistance  of the translation.’ 
!n the  years 1940 - 1945 he  has  already  been interested in my research, stimulating and supporting ,: ? 

it. Much to my regret.Mr. Overhoff  died January 27, 1975, after having completed this translation. 

The English Version  co;t&s some modifications in comparison to the German Version. Some sections in 
chapter 3 are omitted.  Furthermore, !he Plankalkiil  has  been  revised in the last two years. This led to ; 
some modifications in the commentary. In the original  Plankalkiil - in Order te preserve its historial 
form - only  a few typvgaphical errors were corrected. Fot this reason, the English Version too 
deliberately contains some incorrect programs. L 

. .  f .’ . r 
For the Version of the Plank&ii 3 $ant to thank ;also Mr. Dip1.-Inf.  HOhmann, the ?Deutsche f 

Forschungs-Gemeinschaft ” , “ de‘sJlschaft f~ Mathematik  und  Datenverarbeitung  mbH  Bonn ” and 1 
the “ Siemens Gesellschaft ” . p 

I 

i 
4 ,  . .  \ 

. I  \ ’ *  
? 
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z u  
The Plankalkid was developed and  written ,by me in 1945  in  the small village of Hinteritein in the 6 ;  

Alps. The difficult Situation prevailing after  the war meant that I was.unaO1e to continue  the hardware 
rcsearch that I had b e p n  in 1936. This did mean however that  I was able to concentrate on theoretical i 
.studies and as a rdsult gf.&ese the  concept  of an algorithmic language  was born. I called it " Plan - f 
kalkid " , but  unfortunately it couid iiot be published at the time. r \  

Over the past 30 years.the  study of algorithmic languages  became a science in its own right, and one 
with considerable practltal importance. Some of the- developments that  took place in this field followed t f 
the lines I had proposed, while others  took  a different Course. For example, PL/l and Algol 68,  two L 

modern programming languages,, h a k  something in common with PlankdkiiI ( see " The Plankalkül ef 
Konrad Zuse, a  Forerunner d Tbd?h:s Programming  Languages"  in '' Elektronische Rechenanlagen 

t 

1972, Heft 2 " ) . 

I believe that Plankalkül is still of significance today, and the publication, which was not possible during 4: 
the early post-war years, can now be achieved. As part of this publication a concise summary of the ' * 

preparatory work I  had  intended to write for  my doctoral dissertation " Statements of a  theory  of. 
general calculating " is included. There is also a comment written by me in 1972. 

The work, supported by " Siemens Gesellschaft, Miichen", is published by " Gesellschaft fur  Mathe- 
matik und Datenverarbeitung mbH, Bonn " . Special thanks are due to Professor Gulnin and Professor 
fickeberg for their assistance. It is my hope  that this publication will stimulate fiuther  fruitful ' 

coopcration. ' F  
t 

:. 
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. L .  STATEhlENTS OF A THEORY OF GENERAL CALCULATION 

with Special consideration  of the Calculus of Propositions  and its application to relay circuits. 

1 
. \  

, C  ; r  
3 :  

by Konrad  Zuse 1944 

Concise  Sumrnary 

F'ublished 1972 as  an addentum  to the puhlication of the Plankalkuel ( PK ) 

--. 4.. ' '  
'! 

1 

Preface ' .  . *\ 1 

The Paper on the-Theory of General Gilculatwn was  writterr  during  world  war II by  the author  who intcnde4 
is as his doctor thesis However, as a  conscquence of the unforfunate cortditions  prevailitg  in  Gennarty 
during  and after the war, he could twt realize his plan and the Paper  was not published at thit  tune . .  

There =ist a great  nuniber of publications on the  subject today and the applicatiog of mathenlatical bgic 
to the design of computcrs atad the'theory of nvitching have  developed into a specbl sience C. 

L z 

. .  . .  . .~ .  . ... . . . . . ~ 
. __ - . . . ._ . . . . ~. ,'. . 

;r ' I  
f; 

L .  
* .  1 . , )'% 

The author was unfortunady occupied with o tkq  tasks  after the warl which  did rwt allow him to continuc g . %  

with his  theoretical  work on this su6ject. L 

e 
In some  ways the Paper  bc  regardad  as prepration  for  the Plankalkuel . Tk following is the tat o f  the - * 
Paper in  concise form, and it should be  helpful fw an  understanding of the PIardcnIkuel . I 
Normal  typing  is used for  the original t a t  of the manusmpt, and Italics for later cdditions 

Introduction F 
The voluminous repetitive computations associated with statically undetermined Systems encountered  durinc 
studies of Civil  Engineering induced  me, to conceive an automation of the numerical  computations.  In  pur - t 
suit of this idea I built several experimental Computer  models. 

My first aim  was to construct  computers merely for numerical computations. However, in t!!e Course of  my + t  
designworkI  soon developed a  concept for combinatorial  computations.  The difficulties in the design of the 
complicated  control  units of my  Computer  models and  the realisation that, in principle all calculating ope - ' 

rations can be  solved  by  nleans of relais cicuits, hduced me to develop a :"Conditional  calculus".. Later , I 
discovered that my Conditional Calculus corresponded to  the Calculus  of Propositions. Supported by the 
latter's logical  formalism , I  elaborated  Statements to  a theory of  General Calculation  with Special conside - 
ration of the Calculus  of Propositions  and  its .applications to  the design of relay circuits. 1 

. .  - -.- .. . . - 

T 
t 

I found that the term " calculate ** has different meanings depending  on its use in Wlanguage. In science 
engineering,  and economy " calculate " is generally  used in association with numerical  Operations. Colloquialy 
however , it is frequently applied to combinatorial processes. 

A practical example  for  a  non numerical  calculating  Operation is the derivation of a  mathematical  expression 
i.e. the application of a  formuly  by which the derivative of a given  algebraic  expression  can  be produced. $lost 
of  the  mathematical  transformations of expressions, equations, and  Systems of formulas  can be considzred ' 
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as calculations, if  clearly defined  algorithms exist for the production of  results  as functions  of given data . ! 
. I  '. 

In the solution of  engineering  Problems, the developmentof a formula is very often  only  schematic  routine t \ 
work  and , as  such , a calculating process  in the combinatorial sense. It is the programming of the numerical f 
computation for a system  of a given structure. The inputs for this procedure are the data of  tlie  to$logical 4 
structure of the system and the Output is the agorithm, i.e. the program for the  computation of  desired re - 
sulting values . $ 9  

Similarly, payroll accounting  not  only  comprises numerical computing, but also combinatorial calculating, 
since the Course  of tlie'numerica1,computations is  governed  by a  program, which  is dependent on many  con - ! 
ditions, like  maritaf  stqtus, number of children, overtime hours,etc. 

' \  . I : *  

In statistics , also  numerical computations  form  only  a Part of the calculating  processes. The selection of : 
Data  according to certain criteria, theire valuation, classification, and sorting represent  combinatorial 
Operations. ;* * T  t 

So far, nobody Sems to have,felt the need to incorporatc all of the combinatorial Operations in a unifdih t 
formalism. . . . . . , '.. ..% 

Even in railway  engineering,  where clearly defined  specifications  govern the Operation of  switching and * , .  

signalling  devices,  where complex mechanical  gears  have  been  developed,  which  realize the specifications., 
no systematic formalism has been applied so far . 

The  paper is intended as a Stimulus for concerned parties. In this , it is my aim to familiarize the practical 
engineer with  mathematical logic. 

For this purpose  the formalism of logic must be adaptable to practival  use by enegineers and  consequently , 
f 

' 4  ' '. 

6 !  

( 
i 

\. 

9 .  L 

1 

i . ,  
t 

-.. 

I ' - :  

. ,  

must be free of any  philosophicd- reasoning. 
, r  

._ . . ... . . - __...I..__.._.__ ---- . - . - - . ." .-. . 1 . I ----.- 
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? 

Chaptcr 1. ’ 1 
%. 4 . *  

Statements  of a General  Calculations  Calculus . I  
‘ C  

A) General  Introduction 4 

1) Definition of the term,.“Calculation” ’. -\ - . \  .’. . 1 

In the following text we  will regard all schematic Operations, formulas, derivations, and algorithms as calculating t 
processes if, according to a program, resulting data are computed from given input data. ‘i’he numerical calculations 
belong to the lowest level ofsthe calculation thus defmed. 

L I  f t 
Consequently, to calculate m e a n s :  ’‘ To compute . .  new data accordmg to a (algorithm) program”. 

& 

2) Explanation of  the  Tenn ‘‘Data?’ R~ 
* ‘ I .  

‘ $  

a) General Data 

6 

C ’  t 
? 

t 

i 
i 

Data  can be of very different  nature (modes, types), they may be numbers, names, adresses, Signals, ranks, 
Coordinates, etc. AU data have content.  The  content is the meaning of  the data. We must distinguis!! between 
the  constant  and  the variable part  of  the data. The difference between the  two  can best be explained using 
the e x k p l e  of a form or questionaire with preprinted constant information and blank spaces provided for 
the  addition  of variable information, e.g. name, birthday marital Status, etc. 

The preprinted information  conesgonds to the constant Part of  the  data  and the blank spaces to the 
variable part. As long as the blank spaces are  not filled in they represent undetermined values of variables. 
In Order to calculate with such variables one has to refer to them  by means of symbols and to interrelate 
them  by formulas. The varibility of  the  data is determined by  the number of the values which their variable 

1 

f 

e 
i e 

part can assume. Consequently, the sign of a number is a two-fold  variable, of a decimal digit a ten-fold f 
and of a letter a twenty-six fold variable. 

b) Two -fold  Variable Data 
The  most simple form of data are the two-fold  variables. Leibniz-applied this perception to numbers by 
developing a number system with only the  two digits 0 and 1, which he called “Dyadik“. This Binary System 
has also been applied in other fields, for example in the Calculus of Propositions with  the values true and I 

In principle, any data, no  matter  how complicated can be represented by Yes-No-Values. 

I 
“false” instead of 0 and 1. Henceforth in this text, such two-fold  variables  will be called “Yes-No-Value 

kjwJ numbers are composed of ten-fold variable digits:Each of these digits can be represented by 4 
Yes-No-Values ifcoded in the binary system. For example: 

i 
Konrad Zuse Internet Archive http://zuse.zib.de
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7  3 
73 = OLLL OOLL 

S i  
To distinguish the decimal f iyre  1 from the binary " On " or " Yes ", the  correspondingbinary values - P 

will be represented by a capital L, the " Off ' or " No " by a  Zero ( 0 ), , 4 :  
' f  i 

. 4- . ! 

The corresponding-binary number is : 

73 = LOOLOOL 
'. . . -  . '. - 

Letters  can be coded by15-  Yes - No-  Values, as has been done in teleprinting. \. 

In general , a series of  n Yes - No - Values has a variability of 2" . Therefore , 5  Yes - No - Values can 
represent 32 characters : e.g. the 26 letters of the alphabet and  6 others. The spaces between characters 1 
also have to be treated l&e characters. T 

I 
k 

. .  
L 

Representation of  Yes - No -.Valueq ( Y-N-Values ) : 

Y-N-Valaes can be represented in ditermined  or in undetermined form. For the determined form we 
need two-fold  variable symbols, for instance ( -,+ ) or ( 0,L ). For the undetermined form we 
may use letters. e 

. .  
L .  CI 

* .  I t 
L .  . , "b i 

- 6  

C) Structure of Data i 

t 

In principle, any data can be represented by a sequence of Y-N-Values, but  the sequence may become 
infinite . An irrational number, as an example, can only be represented exactly by an infinite sequence of 
digits. In practice, numbers are limited by a finite number of digits. In this case, the  data  are  of  a fuced 
structure. 

f . .  

In contrast to  those are data  of variable structure. The number of the employees of  a  factory, for example, 
is varying in size. 

Variables of composed but fuced structure are for instance: 

t t 

. complex numbers, vectors, matrices, etc. 

I .  
f 
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B) Formalisms  Interrelating  Data - 

1) The Term  Algebraic  Dimension , t r  
There  is a set of formalisms  available to interrelate data. In Logic the term  Operation is  used  if the combinaiiol; 
t im  of two variables  of the Same type  produces a result of the Same type. Such interrclations and  combina -6 1 
tions represent the b.asis of  Algebra  as a whole. Addition , subtraction, multiplication and division are Opera - ' 

tions in this scnce.  Composed data, like vectors and matrices  can also  be connected by  Operations, but  they ' 
do  not  alwajs.prod&c a result of the Same type. Althrough the sum  of two  vectors is  again a vector, their ,- 

X .  4 - -  I 

' 4  

k 

.i 
._ - . *  

scalar product is d number. \. 

The Calculus of Propositions utilizes a formalism in  which the combination  of  two Y-N-Values  again produces i: 
a Y-N-Value +) . Propositions  msy be true or  false.  While  Mathematical  Logic  ainls to arrive at  true conclu -1 
sions based on a giveii set  of axioms, only the syntactic cömbination of  Y-N-Values  does matter here.  There! t 
fore, there would  be no sense in using the terms " true " and " false " for our purposes. 

t 
Formalisms  can be establislted.fogbej different types of tasks, all of  which may be called " algebraic " . Th? 
well - known 1ogicianSchrÖder spoieof the " Algebra  of Logic " . Since we  will soon have to handle formulb 
in which data  a different type must be interrelated, we will introduce tlle term " algebraic dimension " , to * 
define the structure of the data; for instance : b 

Yes-No-Values  (Y-N-Values ) i 

L F 
c -  

- L  

real number 

complex  number 

plane  vector 

spacial vector 

Pair of Coordinates f 
e 

t 
matrix 

determinant of nth Order 

# 

Formulas  with variables of the Same algebraic dimension  only will  be  called '' formulas of homogenous 
algebraic  dimension " . 

I 
The expression 

a2 t b2 t 
is such a formula because all its values  are  numbers. 

Hilbert-Ackerrnann, Grundzüge  der theoretischen Logik, 2. Aufl. , Berlin 1937 
Hilbert - Bernays,  Grundlagen der  Mathematik, 1. Band,  Berlin 1934 

I 

L 

t 

C 
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.- The  formula 

( a + b ) 2 = a 2 + 2 a b + b 2  

js also conlposed  only of numbers, however the expression  as a wvhole is not  a number, but  a Statement of I. 

the dimension Y-N-Value  which  we also consider to be of homogenous algebraic  dimension. 

2) Formulas of Homonenous Algebraic Dimensiqg 

a) The Calculus  of Proposition 

*. . 4. .. 
# 4  
, ' r  

6 :  

i 

f l b  

! 
The chaptcrs 2). to'4) contain a description of the  formal aspects of theChlculus of Proposition in the [ 
representation~giverfby:Hilbert - Ackermartn The folrOwing chapter 5) may deserve specbl  attentwn : 1 . '  I 

> .  

.. X. 

\. 
5 )  Binary Numbers, as Propositions 

A binary  number can be represented by a  conjunctional  combination of propositions Zn , wherein Zn  'mean$ 
that the n" power of'12  is a component of the number. In this  way the numbcr LOOL can be represent - 

t 
T t 

ed  by  the following formula : . . 

- 'z 3. A , F  . 2  A G A Z o  

L 

1 
f 

In this form we cannot only characte'rlze Single numbers, but also sets of numbers.  If  we.confine the.appli- i i 
cation  of the expression to integral numbers  with  four  binary digits, the expression Z3 A zo defines the t 
set  of the following numbers : I 

. , "\ 

MO0 ( 8 )  
- C  

LQM (10)  I 
LLOO ( 12)  

LLM ( 1 4 )  
1 

Special attention is then given to  "Normalized Fonns "and the "Principle of Duality ", because of their ' 

great importance in the design of circuitry. e 
5 

nlefolbwing'cluzpter is of Special importance for the " Phtzkalkuel". t 
6) Calculus  of  Classes. Predicates , and  Functions ! '  t 
The possibility of  reducing all data to  a sequence of Y-N-Values  implies the possibility of tracing any  complex 
calculation back to the Calculus of Propositions. In this, the complex  representation is coded into a sequence 
of Y-N-Values. 

. .  . .  . - -  . 

f 
The  employees of a factory, for instance, can  be identified by a number with four decimal  digits. This 
number can be transformed into  a binary  number. We get a  subset by  selecting a Special  class  e.g. the female 
workers. The list of the numbers  of these  persons corresponds to the disjunctive normal  form, A simpli - 
fication of this form is handly possible  if the numbering  of the employees was continuous  without regard 
to their Sex. 

f 

By introducing  another  coding System,  e.g.  by  assigning  Special  digits for sex, family  Status, job, business , 
age, etc. we are  able to calculate with this Code  by applying it  to the  calculus  of propositions. This is  gene - 
rally practised in statistics, however, without  recognition of the logical character of  these  Operations. I 
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As an example, the entire Code for one Person  can be composed as  follows : 

1) Age 

2) Sex 

3) Family Status 

100 - fold variable 

2 - fold variable 

4 - fold variable 

=. . 4.. . 
'! 

( Single, married, widowed, divorced ) 

Coding with binary digits we need seven digits for  item 1) one digit ,for item 2) and two digits for  item 3) . 
We can  cau theA ~i+i: 

. . .  . . - .  . .. _. - . . , _ -  ._. .. --d. . . . -. .. . . . . .. - 

Ali;  Ag  A4  A3 A2 Al % = Age (binary number) 

Ai . .  

% 
- -  Single 
- + married 
+ -  widowed 
+ +  divorced 

T. select the persons with ttle following characterists 

1) female 

2) Single, widowed, or divorced 

3) age between 16 and 31 years 

we can use  the following formula to classify them : 

or 

As W algebraic dimension we  have developed a sequence of Y-N-Values for a class of persons. Composed 
data  of this type we can represent by a Single symbol, e.g. X . xo , x1 , x2 , ..... then are the values which 
X can assume. The composition of the values OE X produces a new  class. The  propositiond formula is a 
predicate of the algebraic dimension Y-N-  Value , representing a Proposition with the meaning : 

'' X has the property A " . 
In this way we can define a predicate by a " definition equation " : 

Pdl (X) = Df Ä7 (X) I\ Ag (X) V Äg (X) A Äb (X) I\ Ä5 (X) A A4 (X) 

L 

'P 

t 
r 

e 
5 t 
i f  

I 

C 
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? 
i 

.. . i 

, . q  

We can characterize the class selected by this predicate as follows : .‘ i t, 
1 . ’  

2 (Pd1  (X)) 
t 

1 :  
( those X, to which the predicate Pd applies ) ’ ?  i 

Now we introduce  other predicate : i b  

*-. 4..  
I 

6 %  

Pd’2 (X) = Df A7 (X> * Ä8 (X) &j (X) [ 

Then X ( Pd2 (X)) represents all male  Single  persons. 

The  predicate : . 

. .  
I .  ‘. . 

,’. . ‘ .  \ 
.. 

pd3 (X) =Df ( (X> Ag (X) * A4 V A 6  t 

selects all persons oldei,than, or exactly 48 years of age. , t ’  T E 

Then X” (Pd4 (X) ) represerits the Cl& of  all  male  Single  persons who are less than 48 years old. P 

It is the aim of this paper to deal with “ computable  functions ” . These  are functions which  provide the ’ f 
possibility of  deriving  new data  from given data. In  the  expression 

- C  

[< (2 ,3 )A<(3 ,7 )1 -*<(2 ,7 )  I ,  
< ( 2,3 ) represents the proposition : two is  less than three, etc. 

F 
In  mathematical logic the validity  of  these propositions is checked by their derivation from axioms. From  a I 

calculating aspect the expression is a  formula  with  two  numbers as variable  and a  proposition as result. The 
algebraic dimension of the variables must be known for the calculation of this result. 

The algebraic dimension can  be independent  of the technical structure  of the data. The d e s  of geometry for 
the  elements ‘‘ line ” and “ point ” e.g. are  valid  regardless of  the  form in  which  these elements are represen - 
ted, ( as vectors, equations, Pairs of values , etc. ). But for practical calculation their structure  must be knowvn. 

1 
f t 

t 
If, for instance, in the function < ( a,b ) the numbers  a  and  b are represented by binary  numbers  of three 
digits, then  the  propositional  formula is a follows : 

- .  

Here a2 ,  al , ao , b2,   b l  , bo represent the digits of the binary nurnbcrs a  and  b  with the values 2 2 ,  2’ , 
20 . 

In  the original t a t  is folIow& an introduction into the ‘*All ”and “ Existpgce ”Operators Theu h p o r  - r e C/ 
tance for General Calculation will be dealt with in  rhe “Plnnkalkuel ”. 

The following chapter may also deserve interest : , 
f 
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7) Fom~ulas of Nonhomorzenous Alaebraic Dimension . .  
A simple example are the already mentioned relations < , > . They connect numbers with each other, which! E 
however, do not produce another number but a Y-N-Value. In the expression .. 4... I 

i 

, I 

t 

Operations with numbers and progositions are combined in one formula. 

In this context the symbol= represents an  Operation. 
. . .  .\ . .'. . . .  \ 

Another example is : .. 
,=L t* eq t = ( eq : e'quivalent 

2 b 

The  two formulas are 2quivalent and represent the Same relation in  different form. 
, .  

Here  is  logically exactly formulated what is usually put  in plain language. 

t i  
i 

-.. 

If we  Want to state  that only the positive  value of a  squareroot  must be' considcred then we write: . .  t 
b 

A well - known Operation of nonhomogenous algebraic dimension is the scalar product  by which two vectors 
are connected and produce a scdar.value. f 

Y=(a I 
8) DeveloDment of Calculations of HiEher Order on  the Basis of the Calculus of Propositions 

It  has been already shown how numbers can  be represented by Y-N-Values.  Now we will See how Operations 
with binary numbers, e.g. addition, can be perfomed with the Calculus of Proposition. 

t 

f 

Our operands are the binary numbers X and y with the digits 

X, ... X i  ... X 1  * xO Y, Yi ' * *  Y 1 s Y 0  I 
We are asking for  the sum z with the digits 

Zn + 1, Zn ... zi ... z1 szo 

At first, we compute  the sum of the digits of each Single digital Position without considering the carry - over . 
It can be 0, L ,  or M .  The  latter is a binary number with two.digits: The  last digit of this number we C& 

ci . Then, we estabish the following table for ci : 
. . . . . . . .  .- . . . . . .  

1- 
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, 
> - 16 - , 
I 

! 

' I 
- .  

f t ! * '  . 
f 

L i f  

' ;  

c ' r  

We can write : ci eq ( xi -P yi ) I 

a 
We now calculat!: the. carry - over notation di , which indicates,'if a carry - over  has to be made from the , < 
Position i - 1 to'tlie p\osition, i . Thisjj the case,  if the digits xi - and yi both equal One , or if ci 

I , i 

(. =: . 4.. . 
)! i 

- .  . .  . .  

avd di are both positive : 
I 

di eq f X i . 1 ~   Y i - 1 )  V ( d i - 1  A c i ; l )  
CI ? f 

zi can be computed f r m  ci- and di . If there is no carry - over to the Position i , ( $ ) , then zi equals L 

ci , if there is a carry- over thcn zi {s disvalent to ci . C -  C z 
. .  r 

. .  
9 eq ( ci 'Y di *)' - ._ 

k. ' 

For binary numbers with four digits the formulas for  addition are the following : 

i 

Thus is demonstrated,  that  the addition of numbers can be performed with the Calculusof Propositions. lt 1 
is known, that  the more complex iarithmetic Operations  can be reduced to addition and subtraction. f 

Conse,quently, arithmetic Operations  can be represented by  Operations of the Calculus of Propositions. 

In rite  chapter computation of Formulos " the differeertce between  implicit and explicit  expressions is dis - 
&ssedfirst. This is clear  in twmal algebra. The rules of algebra usualb allow a simple  irnplicit fonnula to 
be  transfonned in  such a way that the wanted  value  Stands  isolated on one side of a equatwn 

This is not ahvays  possible with propositional formuhs. It has  also been attempted here to develop  general 
rules for explicit  representation  in  equations  Bur  this  development  does not seem to be of practicd impor - . 

tance ., The " Plankalkuel " has not beett  based on it. Therefore, this section is omitted here 

E 
# ' !  

I 

The following chapter is of importance for the " Plonkalkuel ". 

9) Inflexible Proarams 

A method, especially suited  for calculating machines, is the use of programs which consist of a sequence of 
Operations which the machines have to perform in Order to compute  the results. For this purpose the inter - ' 

C 
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mediate values  have to be  named, too . A simple method is that  to number all  variables  including the  input - ' . .  ' '. 

variablcs systematically with V1 , V2 ... and then to list each Operation separately : t ! ;  

Input values 
a =  V1 

2 and -1 are  the  constants in this fomula. F -  t 

It can  easily  be  Seen that calculations of any length can be performed in the above  way, if they can be reducek 

to the elemtary Operations. 5 5 
The program for a determinant of the degree three looks like this : 

i 
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I 
? 

In propositional.fofmnlJ!as,-the elemtary Operations  are .'. . \. 
A 9 V 7 - i -  , 6 ,  1 

It is  possible here to nkmber the variables  singly in sequence. ? t 

For example : . .  

a = v1 

L 

F 
, C '  L! 

2 

i 
b = V2 program : V1 A V2 eq V5 f 
C = v3 v3 ' v4 eq '6 E 

d =' v4 
I.4 

V5 V V6 eq V7 eq.e  I 
In principle, the shape of the program is the Same as that for!the handling of numbers.  Thus, we are able to . 
apply the progr,am for the determinant also to Y-N-  Values. Our Problem is then  the following : 
The given elements are al , bl , c1 , and a 2 ,  b2 , c2 .  The relation R ( X, y ) means : " X fits y ". X we 
Substitute by a l  , bl , c1 , y we Substitute by a2 , b2 ,  c2 . Now we develop the matrix for the relation 
R ( X, y ), in that we coordinate the elements a l  , bl , c1 to the lines and a2 , b2 , c2  to the columns. ' 

the  corresponding pair  is  valid or not.  In  undetermined form' the symbols are substituted by the variables 
Then  the  symbols + e&attached  to the nine elements of the matrix, which  designate  if the relation for ';U' F -. W(-' 

v1 - V g .  

I 

If in the program, we now Substitute the multiplication by the conjunction ( A ) and the addition or sub - 
traction by the disjunction ( V ) for the  determinant,  then we get as a result a Y-N-Value,  which indicates , 
whether  a distribution of the elements al , bl , c1 ; a2 , b2 , c2 is  possible for the given elements V1 to 
V9 of the  matrix in which the elements of each pair fit together. The following  Problem demonstrates  a 
practical application : At  a party of three ladies  and three gentlemen not all  possible  pairs fit together. We , 
must look for  a seating arrangement which will provide each  lady  with  a  gentleman to suit her. 
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I The  formula of the propositional  determinant renders the list of  possible  pairs to be f o r m e 9  follows : 

gebraic  dimension . The lowest  level  is  again occupied by,the programs with Y-N-Values. Shce  it is possible + 
to compile the higher  level  Operations  by  means  of propositional Operations, it is  in principle also  possible t 
to compile numerical  programs  by the Same means: 

I t  is dso possiblelo,&ompile programs  of a h i g h  level, for example  those  with  complex  numbers, by means 
of  numerical  operationi.” * . .. \. 

I 

X 

q 
Furtherrnore, we are  able to design  programs  in  which matrices represent the input variables  apd in which 
the Operations with thip stand  for the corresponding  combined Operations  of matrix  cdculating. t i  
For  the  execution of such programs;the calculating unit  should be  designed to perform these  Operations;. 
However, it will  be  advantageobs. to   ,hploy “ subprograms ” for repetive computations. t 

Programs for variables and Operations of different algebraic dimension also certainly exist . They would requi+ 
calculating units  for  operations of different levels and storageunits fot  data blocks of varying siies. 

‘r 

? t 
I .  

L 

. -  ’ .*L‘$ ._ i 

a 
- I  

All these  programs are of a futed structure, which  means that the type,  number,  and  sequence of the variables I 

and Operations  are the Same for all computations  and that  the  content of the data  only changes. .t 
Flexible Programs 

Contrary to inflexible programs,  High  Level  Programs handle programs in which the input variables  in - f 

fluence  the  sequence  and  type  of Operations.  If  an employee gets a  monthly salary of less than RM 300,- 
he is not obliged to pay for health insurance. The  computation  of the reductions is a  function of the salary. 1 
Another  example is the computation of the area  of two  plane figures  which may or may not partly overlap * 
and where the overlap  area  is only to be  considered once . Again this program  varies, depending  on the input t t 
variables. 

..-. t 
In principle, it can be demonstrated, that such  variable  programs can be reduced to inflexible programs if 
large sections of them are allowed to run idle. So a program for a full matrix can be used for  a  reduced  matrix 
in which  some  of the elements are equal to zero.  This method is not economical however , because numerous 
multiplications by zero.have to be performed u+cessarily. I r.r/ 
The  programs  for the “ All ” and ‘‘ Existence ’* Operators with series of conjunctions  and disjunctions are 
another  example. These  Operations must be executed for all elements  with an inflexible program. This  method 
is redundant, since the Existence  Operator  already yields ,, positive ‘’ as soon as the first positive element 
occurs.  Likewise, the All Operator  already yields ,, negative *’ , when the first negative element occurs. In t h i s  
case the variability  of the program is the length of the compution. 

t 

As far as is possible upto now  a  summery of the different types of  programs is Show as follows. 
I 

C 
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I. Inflexible Programs 

a) Program of l~oniogenous algcbraic  dimcnsion 

1) For Y-N-Values 

2) For rcal numbers 

3) For complex numbers 

4) For vectors,  matrices, etc. 

b)  Programs of nonhomogenous algebraic  dimension 

11, FJekible-Prograns .’. . .. 
This survey  is not generally valid. We are able, for instance, to put  another level between 1) and 2) for pro - 
grams in which only Single additions occur and where the aritlmetic Operations for rcal numbers are reduced 
to additions. . *\ t t 
The flexible  programs represent the  true field of higher  level combinatorial computations. However, it is not E 
yet possible to deal with the$here & this Stage. , 

t 

These  Flexible Programs w i l l  be a qjecial  subject of the Plankalkuel . 

t .  

L 

. , “1 
* 3- i 

9 
i 

In Chapter 2 the application of tlze Calculuaof  Propositwns to relay  circuits is discussed. 
I 

At tlmt time ( around 1940 ) publications by Sltannon and C.H. Piesch  which  already exated, dealt with t 
Problems of nvitching algebra. The Calculus of Propositions and the h v s  of switching are systematically 
compared in  chapter 2, contrary to their  traatmentin  tltose Papers. In this way - irl my opinion - tlze problem 
became much clearer. The application of the Duality - Principb for Propositions to relay  circuits proved to 
be very  advantagenous 

Furthennore, diffrent types of relays  are  discussed, e.g. the mechanical nvitching element, the electro - t 
magnetic  relay, and the tube - rehy ( based on  the research of Dr. Schreyer ).. In Order to become indepen - E 
dent of certain  relay  techniques I introduced an “Abstract Switching Representatwn Ir; 

F 

Neveriheless,  these  investigations are of no direct importance for the “ Plankalkuel ”. 

I 
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Prof. Konrad Zuse 

t 

COMMENT OF THE " PLANKALKUEL " ! E  

Introduction 

The " Plankalkuel " was developed by me  in the years before 1945. I wrote the following comment in 4 5  

1972. The '' Plankalkuel " - hereafter called PK - is reprociuced with this comment in its original form; F 

It  was translated into.English in 1974. In Order to facilitate the understanding of the PK this cornment .( 
occasionally refers ,td Ggorithmic languages in use today, like Fortran, Algol 68, PL /I .  

The term " Kalkuel " ( calculus ) does not correspond to its meaning in matheniatics in a strong sense. 
I t  is more what we call  an algorithmic language today. 

First, I Want to comment 03 the development of the German Computer upto 1945, the year in which the L 

PK was established in its fqal form. C .  t t, 

4 f 

A) Development upto 1945 ' ' - ._ 3 
r, 

The German Computer  developed entirely  independently of those developed almost simultaneously in tlle 
United States and other countries. I 
I. Develoument of hardware 

I )  1934 : I was a Student of civil - engineering at  the Technische Universität Bcxlin - Charlottenbur:: f 
and had already developed the basic concept of a program - controlled calculating machine with the. 
following features : .. 

a) Program - control  by punched tape with one address Code or three address Code. 
f 

b) Application of the Binary System to arithmetic  unit, Storage unit and adress - coding. 

C) Floating  point representation ( at  that time I called it " Halblogarithmische Form " ( semi - \ 

, 
.'. . .- I \  

I 

A t i  T E 

* .  I - ' P.\ 

-. 
.- . 

. .- .. 

logarithmical form ) . t t  
d) Application of Bi - stable switching elements, e.g. relays. 

I1 2) 1936 : I began to construct  test models, the first was model Z1, in  a purely mechanical technology. i t  
I developed a " Mechanische Schaltgliedtechnik " ( rnechanical switching element system ) . This 
model was completed about 1938; but  it was operable only in some Parts. ( E.g. the a r i tbe t ic  unit 
in binary system with floating - point and the Storage unit ). 

point binary representation with 16 bit word length ). This model was also a  tsst model. Bgt it  1 
demonstrated the feasibility of  my Computer development. 

I 
3) 1938/39: Construction of  the model 22. Its  arithmetic  unit had electromagnetic relays ( fued - 

4)  1939/41 : Construction of the model 23. This was contnwted using electronlagnetic relay - tech - 
nique solely. ( Binary system, floating point, 22 bit word length, 8 - channel Code for  punched tape 
control, 64 - word Storage. ) 

The  model 23 was cornpleted in 1941 and was the first completely functioning program - control - 
led calculating machine in the world. A number of mathematical problems were tested on it I 

( linear equation - system, - .  - ) quadratic equations, determinants, matirces, and Special aerodynamic 
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Problems, e.g.  wing fluttering ) . 

The 23 computer was destroyed in  an  airraid  in 1944 . 
5 )  1942:Contruction  of  a Special  Computer  model SI to measure the wings of guided missiles. 

.f i 

1 : P  
d f  

< This computer was installed in the production line for the HS 293 ( Henschel  Flugzeugwerke ) 
guided  missiles .arid was intended to eliminatc the wing - inaccuracies of this missile with  the aid 1 

of a Special cakulation.  (Electromagnetic relay - technique,  binary System, fixed Point, sequential , i t 

hardware p:ro$ii-with rotary :witches. ) ? 
b i  : 

6 )  1943/44 : Construction of the Computer Model S2. It was built for the Same purpose as model  S1, i 
but  the  metering cloch were connected directly to the calculator and were  read automatically 
through  the prerarn ( Analog - to - digital  conversion ). This application  represented  the realizationr , I  * 
of the first pr6cess - cbntrol by a Computer  in the world. L 

7) 1942/45 : Construdtion ?€ the Universal  Program - controlled  Calculator 24. This Computer  re - f 
C. C 

presented  an extensio; of the‘:k.omputer 23 ( electromagnetic relay L technique , binary System, j 
floating Point, punched tape control, mechanical  Storage unit, originally  designed for  a  capacity of $ 
1024 words ). The Computer was completed at  the end of world  war I1 for the  computation of . ’ 

simple  programs; I 

- $  

. .  F 

,. 
8) 1944 : Construction o f -a  small test model for Propositional Calculus  in  relay technique. 1 
9) 1937 : In  cooperation  with Dr. Schreyer  the first steps towards the development of electronic . 

Computers  were undertaken. First Dr. Schreyer  constructed  a test model fitted with electronic tubes 
( sec  thesis  of  Dr. Schreyer ) . f 

: 1O)j 1940 - 45 : Dr. Schreyer  contructed  another test model using electronic relay technique at the ’ 

Technische  Universität  Berlin - Charlottenburg  with an arithmetic  unit of 10 binary digits. I - .  

11)  Around  1944 : Dr.  Dirks constructed  a test model with a  magnetic Storage unit ( disc ) and simple) i I  
! . - electronic calculating units. This  development was perfonned  independently of the  work  of Dr. 

Schreyer and  myself.  Dr.  Dirks and myself had  no knowledge of each  other until 1952. t 
11. Development of Software 

1) 1936/37 : Development of a “Bedingungs - Kombinatorik ” f Conditional Calculus ) . The  con - I 
sequent use of the relay technique, in other words, the application of  construction  elements  with 
.two distinct stages induced me to analyse theoretically the rules  which such  constructions and cir - 1 
cuits follow. This resulted in the “ Bedingungskombinatorik ”: Later  on , I realized that  my calcuius 
was formally icjentical with  the Calculus  of Propositions. 

In this way I created  “Schaltalgebra” ( switching  algebra ). Now I was able to design my Computer 
models in an “ Abstrakte  Schaltgliedtechnik ” ( abstract switching element  technique ). The  mecha - 
nical ‘‘ circuits ** of the model  Z1 essentialiy corresponded to the electromechanical circuits of  my 
later  models 22, 23, 24 . 

I 

The  switching  theory also facilitatqd the design of  our electronic Computers. Schreyer  only  had to 
develop electronic switching  components for the propositional Operations Conjunction,  Disjunction , 

i 
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and Negation and to connect tliem in accordance with the theoretical  circuits already  developed. .;; 
! 

, .  

2) 1943/44 : Ansitze  einer Theorie des  Allgemeinen Rechnens ( Statements  of a  General  Calculation! C t 
Theory ) . 1 elaborated the  concept outlined in 11. 1) with the  intention of makiq  it  the  subject F f 
of a doctor - thesis.  An extract of that paper has  been  enclosed  because it will  faciliiate & uqder - {  > 
standing of the PK . z 

f L  
3) 1943/44 : Preparation of  a  general purpose algorithmic  language ( PK ) in the form of some  notes. 

111. Design of Computers during World  War I1 
\. V 

My Computer mod&co?structed during the war,  were ordered for  military applications.  Because of 
the  limitations of personnel and material they aimed at cleary defmable gods , 'which I could  achieve i, 
with the limited  recources and limited  deadlines then at  my disposal . The possibilities of my swit - 
ching  algebra  were.systematically  applied. Consequently with regard to their logical  design, I believe I 
that  my  cotnputer'hodels may have  been  well  ahead of the contemporary developlnents in the USA. ' I 

Nevertheless, I intentiously made no use of the facilities of conditional instructions, address  trans'- 2 
. t  

formations and others,.sh&'I  Cwld  not run the risk, of  increasing the capability of  my Computers ; 
without adequate recources for ,&eir  realization,,  e.g. the construction of Storage units  of  the  required.i 
high Storage capacity. 

Despite this, I already  designed during World-War I1 several  theoretical models which utilized logical 
instructions, program  selection,  address computation,  and  the facilities of my Conditional Calculus. 
I already realized  tllen that Computers must also be  able to Store  programs as well  as data.  But to me 

1 :  

.. ; 

t 

, -  
L 

. .  Y 

C 

I 
. C  

I 

Some of the aforementioned capabilities  were incorporated into the design of the 24 model which  was 
in construction during the war. They were  realized  practically, when the 24 model was installed at the e 
" Eidgenössische  Technische  Hochschule *' ( ETH ) in Zurich  in 1951 . ' e  
I was then  particularly occupied with the Problem of  content addressable  memories, and  the organisa - 
ti; of Storage and retrieval( this term may not have  been  used in 1945 ) of data of varying struc - 
tures as ou:lined in  the PK. 

Already in  the years between 1937 and 1945 I had  in mind to construct a  Special - purpose calculator f 
" Planfertigungsgerät " for  the Construction of programs  in addition to the usual  Computer for t h e  
execution of numerical  programs. Actual development, later,  went  in a different  direction . The  ordi - 1 
nary Computer  was  improved step  by  step to deal with logical  Problems. The Problems of my " Plan - 
fertigungsgerät " are  solved today.by Compilers or generators on ordinary Computers. 

Most of  the  theoretical  studies which I undertook during the war  remained on paper, and of these , 
most have  been lost. 

I 
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IV. Knowledae of O.ther  Developments 

As dready  mentioned, developments other than mine and that  of Dr. Schreyer were performed inde - 
pendently. J only became acquainted with  the fundamcntal work of Babbage  in 1938, when I was 
applying for a patent in the USA. hloreover, 1 had no knowledge of the very irnportant'horkibf Turing4 
( " On computable numbers '' ) , and the  Switching  Algebra of Shannon. Only by accident in 1$44 
did I learn of the Aiken  Computer, USA. However, the  picture of the MAKK I Computer supplied by 
the German secret service could give us only a  general Gpression. 

B) The  Situation.in 1345 ' 

Most of  my models wM&were  constgucted  during the war  in  Berlin  were destroyed in  airraids. Only the 
Model 24 could  be  saved  in an adventurous truck journey from Berlin to the Alps. There  it was hidden 
in the small  village  of Hinterstein, Allgäu. 

. .  . I 

k 

C 

t. 

I 

I 
i 

4 f At that time,  however,.it wqs not possible to continue with the  construction of the machine. My small t 

staff of 12 dispersed. . .  V 

4 t 
So 1 had sufficient time to cbntinuklkith  my theoretical  investigations. 

The Model 24 could hardly be operated. Moreover,  we  did not even  need an algorithmic language to pro - 
gram this model. . C  R 

In those circumstances I developed the PK as a desk - work theory, regardless  as to'wether suitable  equip 4 
ment  for  its implementation would  be  available  in the near future. 

* .  
i 
f 

. -  

C) Comparison of the PK with Other Algoritllmic  Languapes F 
' With  regard to the aforementioned facts,  the great  diffkrence  which exists between the  concept  of the PK ' 

and the development of programming  languages  which  were started  later can be understood. 1 

Cobol, Fortran,  and Algol, for instance, were introduced  in  the years between 1950 to 1960 to satisfy f t  
the demand for programming facilities for  the Computers  which had already  been constructed  and  put 
to use.  Accordingly,  these  languages  corresponded to the daily  occuring  Problems.  Numerical Problems 
were of major importance at that time. Only slowly  did a trend develop.towards universal calculation  in 
the sense  of the PK. 

Then, however, I was quite alone with my PK - oriented concept . Contrary to the lively interest  which 
my hardware development met with, my work in  Software ( the  ,term did not  then exist ) was hardly 
noticed. I discussed the PK onIy  occasionally even with my best friends and my closest  teammates. And 
then we  disagreed,  even in  the essential concept; Moreover, the influence of the American developments 
was  exceedingly strong  at  that time and dominated the general  thinking. 

I 
t 

The indifference towards the PK was somewhat disappointing for me , when the official  discussions about 
Algol started in 1955. Some of the participants had  sufficient  knowledge of the PK to cooperate  and  in 
my opinion it would only have  been fair if they had openly announced and  utilized  the ideas anticipated 
in the PK. I 

i 
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! 

There are algorithmic languages  available today which  are  also efficient  from  a logical Point of  view such , . ; 
as  PL/ 1 and Al601 68. They offer some  facilities, already  contained in the PK, arid beyond  that, SOme 
formulations wllich facilitated the practical Operation of Computers. 

This Shows the decisive difference between the PK and  all of the progranming languages  developed ldter : 
the goal of the PK is*, to formulate the computational and  logical coherence  of a program  by explicit and , f )r 
univocal instructions, but the PK does not  attempt the practical execution of  programs. There is no ‘‘ imple -. t ‘  
mentation” of the Pd. ! 

i 
In contrast to &at; th?,@odern algorithmic languages  developed through the practical use of Computers . ’ *: 
This is manifestetl by the input - outp’ut  and transfer Statements ( READ, PRINT, PUT. etc. ) , further - b 
more, by  facilities for the runtime Organisation. 

The PK  was originally’developed in the form of a  two - dimensional representation. This  form would  haver t 
to be transferred int‘o ä seqilence of characters, as  is common  with the other programming  languages for 
the  execution  of programs .. *, C. E 

& t 

In view of  the previously  described ‘situation in 1945, it is obvious  why I was not concerned with program! 3 
for numerical calculations when I developed the PK. I did not  expect any difficulties in this field then , : 
and consequently I concentrated  my  efforts’mainly  on the logical  Problems beyond the common numericzf 
calculations. These circumstances  may later have  been the reason for the  opnion that the PK was not  the” 
rigllt  base for  the  development of algorithmic languages.  Moreover , the PK was almost  unknown.  After 
the completion o f  the PK in its  preliminary  form, I became completely  absorbed by the management  of 
a Computer plant of my own.  Besides that, for a  long time no Computers  were  available  which could be 
applied to higher - level  logical  Problems  such  as those exemplified in the PK.  As a  consequence of all 
this the PK was not published  and remained  sleeping  in a drawer  of my desk. F 

:: 5 I 
! i  

-. . 4. .. 
* 

$ 

? 

\. 

I :  
4 .  

* .  $ * . >\ 
* .  

t 

Today Computer techniology  has arrived at a stage  where the discussion of  the Problems treated in the I 
PK have  gained great practical importance. # t  
D) Future  Importance of the PK 

This  paper is being published in Order to  compensate  for the timely publication of the PK omitted in the 
past. Of  Course,  we  have to look  at  it differently today  than we would  have then. 

In this paper I will not  yet discuss  in detail the question as to what extent considerations of the PK can I 
be applied to  future developments of algorithmic languages. But I nevertheless Want to  state  that I believe 
that basic reflections are  necessary. At present, tendencies in the field  of the theory  of  formal languages 1 
and the Problems connected  with  them diverge  considerably.  On the one side there are the ambitions 
of the  people directly involved in the practical use of  Computers. Their interest is directed t w a r d s  -Y 
fl0wchart.s  of problems, easy knplementation , and the development of Compilers and Operating  Systems. 

V- 

On the other side a definitely theoretical tendency exists to- solve the Problems of the formal languages 
by  means of  modern  mathematics.  Although some  useful theoretical knowledge has certainly be achieved, 
it cannot as yet be stated that these endeavours have produced results of importance to  the Computer 
Software,  if related to the investment. I 

. .  
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I can only suggest  that  these  Problems  should be considered now. In another  paper I hope to be able to , .I ; 
offer a concept  which will be based on a solid  theoretical  foundation and, nevertheless , be  applicable 
to practical  Problems. 

I .  

. .  
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THE  PLANKALKUEL 

Comrnents of  Chapter 1 

General  Programs 

I( .. 4 * .  

, 1 :  
’! i 

: L  
11. 1) General Notations for Classification 

The PK has  adapted the method  of Babbage to number  the  occuring variables systematically. In simple I 

programs the humbqs coirespond to the addresses in thc Storage unit of  the  Computer. This  method  can i ,, 
be extended for, mbre&mplicate programs.  In  an algorithmic language , for instance the following notati - ’ ?  
ons  must be distinguishable through  &fferent  codcs : q 
Variables , intermediate values,  results etc. ( nowdays also called objects, Parameters ... ) 
Swctures types  and&odes of data t 4  

F 

T t 
Components of sthctured’data, selectors L . .  r 

C ’  e 
Programs , subprograms, procedureq, functions, Operators , etc. 

Marks qf labe12 for program reque2.- ;dt- 
In the PK numbering  and digital coding are used almost exclusively. In  contrast  modern  algorithmic 

P 
* .  $ 

L .  

f 

languages  allow more  freedom  through  the use  of identifiers. 

11. 2) Data  and Their  Representation t 
The specification of the structure  of  data distinguishes the PK probably  most  from other algorithmic 
languages. In  the PK the structures are  systematically  developed out of Yes - No - Values. In this way 
tree structures which can be  as complicated as necessary can be generated.  From  the beginning it is 1 
assumed that these structures may  be  variable  themselves ( e.g. a list with  a varying number of elements , 
an array ( row ) or in the case of an array ( row ) of characters a “ string ” ). The  term “ List ” is used 1 
in the PK in another sense, than in modern ,, List - Procerring ” . 

The  indetenninate strucure characters U , 01 allow a variability of the structures  and  types  of  data 
such as can scarcely be acheved by the modern algorithmic languages. The Operator N ( V ) in the PK 
corresponds to  the Operator upb in Algol 68. ‘0 

U. 2) b) Limitation of Data 

.The “ limitation of  data ” allows  an accurate definition of the  elements  within the Set of different values 
of a specified structure. Similar formulations are  used for instance in PASCAL. 

I 
t 

11. 2) C) Types  of  Data 

In distinguishing between  types of data, the PK not  only deals with pure  Syntax but also considers  semantic 
aspects.  However, in the following chapters only limited use  has been made of t h i s  facility. 

11. 2) d) Modes of  Data 

The  introduction of the notation “ modes of data ” is advantagenous,  sinse it  does not enforce  an accu - , 
rate definition of the data structures in  every  case.  This corresponds e.g. to the presently  used  notations 
‘‘ REAL ” , ‘?NT ” for the specification of numbers. 

C 
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I .  

11.2) e) Components of Data .. . i 

Since the PK uses tree structures, the components  correspond to the possible bränching  Points  of  the  tree. 

In the PK the components are  always numbered  upwards, beginning with zero. This corr&pondSto  fhe 1 7 \ 
indexing of the digits  of  integral numbers, whc're the Position  of the lowest  value  is  assigned the inddx i 

zero, ( corresponding to 2' = 1 in the binary system ) . This method  of starting to Count with Zero , : .  L 
also corresponds to. the fact that registers  in a calculator have a starting Position corresponding to Zero 
( all elements reset ).*This has the disadvantage, that the index for the highest element is n - 1 in  a  lisl 
of n  elements. Modern  languages  allow  more  freedom  in this respect. There the upper and lower  bound 
of arrays can be.chosqn.r&domly ( ALGOL 68 ) . 1 :  

In the PK there are no mnemonic  notations for components like Re( V ) ,  Im ( V ) as there are in i 

Algol 68, for instance. which  select the real or the imaginary component  of  a  complex  number. I i  
Since only tree structures are directly defined in the PK , it is consequently not possible, for instance to 4 
define both the components',:' r0w.j '* and " column j " of a  matnx directly. If the  matrix is defiied iz 

' L  

as a  set of  rows then  Ki  .nieans rdy i . If we  Want to select the column  j  then we must select the singlq , 

elements of the matrix  and  then assemble them in the  column , for example : h -  

, ' I ,' 5 
! E  

d p  
t 

.. ,b 

1 1 .\ T r; 
* .  

. .  \ 

I 

( k o , j ; K l , j ;  ... K n , j )  I 
The PK , however pemits  to write  a Special  program for th is  task  which is applicable to all matrices 
m x n .  i 

0 

11.  2) f )  Representation of  Data 

The beginning  of this section contains the important Operation concatenation of data, which corresponds F 
to +e inversion of the Operation ,, selection " of components. 

The  sequence  of  the  components is now of importance.  The natural sequence begins with the componentr 
to which the lowest  index refers. In  contrast,  in the normal notation of numbers the digits with  the high .i t 
est  index are written first. Therefore, we must look for a compromise. This would not be  necessary for 

r 

an internal representation in a Computer,  because there the digit with the lowest  index is also trans - 
ferred first. 

In line with  its basic concept the PK uses  simple characters for the determinate  notation of Y-N- Values 
( -, t; or 0,L ) . The  algorithmic languages  developed later did not systematically utilize Y-N-  Values I 
as their base. Only in revised  versions did  they Supplement the mode Boolean with the values 
" true " and " false " . This  may be sufficient , as  long as Y-N-Values are only of minor  importance in 
a program. The use  of the symbol o as an indetermined Y-N-Value  is sometimes  advantageous, but 
avoidable. This  method  could be extended to random  data structures by the assignment  of a  non - Special , 

character to a certain structure. This is frequently applied in algorithmic representations through for 
instance the use of the digit " 9 " as a representative for  decimal  digits and the letter " X '' as a re - 
presentative for 'letters ( e.g. 999.99 for a decimal number  with 3 digits before  and  two digits after  the 
point  in COBOL ) . 

t 

I 
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11. 2) g) The Two-Dimensional Representation 

An important feature of the PK  is representation in different lines. Its advantage  lies  in the fact thakit b 
, I :  

gives the human user a good  survey. We have to rtmelnber , that the PK  in its  form displayed here was '' i 

designed to realize a univocal representation of complicated algorithms. For  implementation,  the  programs f W 
of the PK must be converted  into the form of a linear  series  of characters. This can undoubtedly be 
achieved  by representatidn nlethods which correspond to those  of modern  alogrithmic languages. 

The representation In'  lines  alfows the introduction of a Special  line for the specification of structure 
characters ( mode indicatkk-) :'lhis corresponds to the .'' declarations " in modern program  languages. 

The  data in the structure line are often  redundant  and may be omitted then. 

11. 2) h) Constants . 
4 I 

Constants may  obviously  also be.direc4y  defined in determinate  from by a  notation  of &r value. 

11. 2) i) Supplementation of Data by bfufnbering  of Components 

* .  1 
' h\ 

* .  

The Operator I ( ) simplifies the handling of lists in a similar  way to the Operator N ( ) . I '( )'corresponds 
to the Operator e h  N ( ) to  the Operator & in Algol68. ' 

11. 2) j) Data of Fixed  and Variable Structure . I 
The  term " variable structure " corresponds to the term arrays with flexible bounds in modern algorithnlic 
languages. 

I! 

C 
,.. 

11. 3) Chapter 3 - Fixed Programs 

The distinction between fmed , quasi-fmed , and free  programs in the PK is a  conseqaence  of  its  history . 
The first Computers, that of  Babbage  and my models 21 to 24 , were consciously  limited to fured  programs) 
Babbage,  even , was  already  aware  of the conditional instruction , but did not apply i t  in the  model which 

, he  constructed.  Today , nearly all programs  in  use  are  free programs in the sense  of the PK. Therefore, it 
is not to be  recommended to  adapt the terminology  of the PK. Fixed programs are now-a-'days called 
strict sequential programs ( without branches and  loops ) . 

The rules and  terms defmed in chapter 3 are  valid for quasi-fmed and free  programs. I 
11. 3 ) a)  Designation .of Programs 

. .  

As already mentioned,  the programs are designated  by  indices in the PK.  This  has its advantage for syste - 
matic classification but has, without  doubt, some  disadvantages  too. In  may cases the modern use of 
identifiers for programs is of considerable advantage. 

Some exceptions to  its  strict rules  are also allowed in the PK. 

11. 3) b ) Yariables of  a Program 

Classification into the four categories Q! - 6 facilitates the understanding  of  a program. In other program 
languages these differences are normally not so strongly emphazised, since random  notations are allowed I 

I 

0 

6 
Konrad Zuse Internet Archive http://zuse.zib.de

License: CC-BY-NC-SA



- 30 - 

U 1  
,i 

there , instead of the PK characters Vi , Zi , Ci , Ri . The role played by these values  can frequently be .. i 

understood  only with the help of the program. . I  " -C  
The values  listed under 01 to 6 correspond to the variables  in common  mathematical formbb. i.. . 

11. 3) C ) Range  of Indices f ) d  
In the PK the scope  of the variables, intermediate values, etc. is' limited to the program for which they ? 
are  used. Such a simple  and strict rule  does not always exist in modern languages  because  of  tlle  use of t 

a *' block structu're ".,. .The difference between " local " and '' global " Parameters in modern languages 
has not been  relevant 'forin.thc Start  in the PK, since in the latter all mentioned  Parameters are local ' f  

. I  

! E  
P 

, 1 :  
' 4  i 

.. 
( e.g. FORTRAN dr COBOL j'. . b t  

'& 

11. 3) d)  Marginal Data  Extract ( Randauszug ) .* 
In some  way the '' marginal data  extract " corresponds to the Parameter or specification list of a  procedure L 
or program module in modern progr&ing  languages. 

P 
C .  i 

t 

The  input values may be substituted b3 *' global Parameters " , if the associated program to which they j 
belong is inserted into  the frame  of other programs. ' 

The Data Extract itself is not Part of the program , but  only  coordinated to it. By this convention, the - * 

. .  
4 . .  I 

L .  . , "\ 

R 
L6 program " of the PK  is confined to the instructions for the calculating  process. This concept differs 
from the modern  concept which includes the declaratiom as unexecutable  Statements in the term I 
" program " . 

11. 3) e) Assikment  Statement  and the Assignment Symbol F 

The  symbol 3 of the'PK  corresponds to the symbol : = in modern programming  languages . The d e s  1 
are essentially the Same for both Symbols with the difference, however , that  the symbol 3 must  point f 

to a following result, while the symbol : = must  follow the result which then  stands left of it. 

The  representation of the PK corresponds to the Course  of the actions during  elaboration . On the  left 
hand we have the old  values, on the right hand the new  ones. 

The  symbol : = has been  Chosen  by mathematicians in accordance  with the definition - symbol :: = of 
symbolic logic. Their  concept is  of advantage in that the calculated value is exposed  and easily readable I 
at the beginning of  a line.  But this difference between  the  two  concepts is not very  relevant. I 
11.3) fj Subprograms 

In principle, the PK does not distinguish between main-programs, subroutines,  procedures, functions, etc. 
Any progrim can be  used as a  procedure. 

The rule that any result of a program can be  used as a  function identifier is  very  useful. If allows the 
easy use of programs  as subprograms  within the fr&e of  a main  program. ' 

I 

Indenpendendy of this general rule, it is  possible to denote Special subprograms ( PZ,U ... ) 'in the PK . 
This has an  effect  only  on the scope of the variables. ' 
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11.3) g) Operation  -Symbols,  Function - Symbols i 
. *  

, I  

From  a logical point of  view there i i is  not necessary to  treat operations and functiom seperately from ! 3 t 
. .  

the programs. Also the PK provides the possibility of using the  notations  with which the  mathematician, ~ 1 
is  familiar. , 1 :  

! i 

*. . . 4- ~ 

11. 3) 11) Remark 

A Special notation  for " comment " is  missing  in the PK if it is compared to  other algorithmic languages. 
Naturally, the followjng  examples  occasionally contain  comments. However,  since the  PK.is  not designed [ 
to produce piogrims ready for complication, it is not necessary to mark the comments specially, in crder, ; 
to  instruct  the  compilei-to  jump ovq. them. 

11.4) Quasi - Fixed Proarams 

The  introduction of &e term " quasi - fured programs " resulted from my concept at  that time , of  deve ' 

loping Special  machines for the composition of  programs ( Planfertigungsgeräte ). In this sence I syste - L 

matically investigated tlle pqssibilitp of  program  Variations. No Computers with essential facilities foryaria! 
tions of the Course of the  c&gatidn existed then. The following chapter  only is a typical example of t 
merely theoretical desk work. Lit'er,  aaround 1955, the 'development  had gone otller ways. 

11.4) a). - e) I scarcely  used the Variations  mention'ed in these sections in later examples of programs 

11.4) e)  Variable - Structure - Symbol 

This section, interestingly; contain a. remark  about the Storage of programs 'at  the end of it. As already 
mentioned, this facility was self - evident for me.  Nevertheless, the content  of this section does not . 
concern itself with the essential aspects of the Problem . 

11.4) f )  Variation of the  Number of Components of a  Structure 

This Variation  of a program  is, perhaps, the most  important  one.  For tlis purpose, this facility is achieved 
by the introduction e.g. of the  mode string in modern  algorithmic languagcs. 

11.4) g) General Considerations a b u t  the Variation of  Pronrams ! .  I f  
The Variations  of  programs mentioned in this chapter  indeed furnish the PK with  some  of the characteristics . 

of a calculus. In 1945, the term '' algorithmic language '' in its present meaning was not yet  common. 
"ha t  I had in mind  with '' Rechenplanfertigung " in the PK is only  hinted at there in principle. This 
hol& true especially for the remark in section 11. 4) b) on the coordination of structure - Symbols to I 
Operation - Symbols. To realize, that  it would be necessary to fransform  the  formulas of the PK into  a 
futed  sequence of  Symbols, in Order to be able to perform  symbolic calculations ( See chapter 4 : Ope - 
rations with Algebraic  Expressions ) . 

I ) ,  
f i !  

' .  . 
i 
4 

1 .  1 

2 i 
f 

! 

. .  1 
' 

F 

e 
' t  

0 ,  

11. 5 )  Free Programs 

As already  mentioned, the " free  programs " in the definition of the PK represent  the  common  form of 
programs as they are  used today.  Fixed  and quasi - futed  programs  may  be considered as a Special form 
of free  programs. 

I 
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11. 5 )  a) Variable End  Symbol , I 
f 

The Variable End  Symbol is the simplest form of a  branch instruction. It corresponds to the nowadays f i 
so called  LEAVE or EXIT  Statements. It allows the ur.ivocal  programming  of a  complicate(l calq$tion E 
composed  of  many main  programs  and  subprograms.  In other  algorithmic languages this function is ,', 1 :  i 

aclueved  by conditional  Statements ( IF, WHILE ) or  by GO T 0  - Statements  and labeh. 
4 5  

The GO T 0  Statements are often  the  source of errors and can  even  be  always  avoided. 1 assume that  the [ 
PK Fin  Symbol is more fool-proof. 

' : 1  
It is also  incorpor&ed:in the, PK the ,gethod, now common  of enclosing  program parts between brackets ! 
to which the end Symbol  FIN refers. In  some algorithmic languages symbols like  BEGIN, END are in - I 
stead  of  brackets  to,specify program parts. But their effect extends still further. 

i 

I r 
\ 

' . ' \ '  

I @  
11. 5 )  b) Conditional Proaram Parts 

A i 
L 

t 

This is  again  one of the most  impbrtant  types of conditional Statements.  In other  algorithmic languages C' 
symbols like IF, THEN, EvSE,WeILE, F1 are  used for the same'purpose. The PK knows only the 

t. 

simple condition, which is' no alte'mative to THEN .... EISE . Naturally , rhis  is only  a  question  of  eco - . ; 
nomy of representation. The  extended  modern  form certainly has  some  advantages. 

8 
a 

11. 5 )  C) Variable Indices - *  

The Variables Indices represent  another  important  form of  variable instruction. Today, we also call this 
facility " transformation  or  computation of  addresses " . 

V 

' 

C 

f 
The  broken lines are more  a picture - writing than a representationby Symbol. Remember, that  the 
fiom of the PK presented  here is primarily  designed for human  understanding.in  contrast to  the Computer., f 

In Order to feed  Compilers etc. the PK must be converted into  a sequence  of Symbols. 

The  representation used in the PK allows easy distinction between the stmctures of components  apd 
their indices. 

i 

, 11. 5)  e) Computation of  Proarams 

See the  comment referring to 11. 4) 

11.6) Repetitive Proarams 

Repetitive Programs  of the PK correspond to  the WHILE DO- Statements in modern languages: In  the PK 
the different possibilities  are represented by W - instructionsWo to W6 . The  following  modern  notations 
for exarnple correspond to the  formulas Wo to W5 : 

Equivalent  Constructions in ALGOL 68 : 

W&) [P] G T 0  n D 0  P 

Wl(n) [P (i)] I FOR  i FROM 0 T 0  n-1 D0 P (i) 

W$n) [P (i)] FOR i FROM  n-1 BY -1 T0 0 D 0  P (i) 

W,(n,m)'[P  (i)] FOR i FROM n T0 m-1 D0 . .  P (i) - .. ... 

I 

C 
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W4(n,m) [P (i)] FOR i FROM n BY -1 T 0   m t l   D 0  .P (i) 

FOR i FROM n T 0  m-1 D0 P ( i ) 

ELSE 

i 

FOR i’  FROM n BY -1 T 0   m t l   D 0  P (i) ! 
[ 
: 

’ ?  
I 

The modern instfuctions  peniiit spscification of  the upper and the lower bounds and the  step width. W s  ’ 
is undoubtedly more elegant. 

Mathematical logic, in partictilar‘d’propositional calculus assisted me  most effectively in the development j 
of a switching algebra. This caused me-to investigate , especially the Predicate Calculus. I soon recognized f 
that this calculus in particular was suited to the simplification of programming tasks. This fmding has  been* 
discovered  again recently and has led to the use of this calculus for  the description of  data  and  structures. 
of programs e.g. VDL ( Vienna Definition Language ) . The Predicate Calculus had already been applied 
inadvertentljr for  data processing before tlle introduction of Computers. This holds true  for nearly all 
punched card Operations. The selection of Special cards from a stack corresponds to the Operator, 

1 
P P ( X )  

t 
‘‘ Those X for which the predicata proves to be true ” . 
In  a similar way, the  other Operators of the predicate calculus can effectively be used too. This becomes t 
obvious in the development of  chess programs especially. In them we very often have to iormulate 

piece ” . To formulate such a task accurately we need the Operators of  the predicate calculus. 

1) The “ variable of third stage ” of the PK does not correspont directly to the Referenceconcept for 
instance in Algol 68. 

2) The first character R forms together with o a Special  Symbol Rn . The second R -means ,, result ”. I 

E 

criteria as follows : “ There is a Square occupied by a white officer which is under attack by a black f 

3) The Statement R = V E V is a  comment. 
0 0 1  

4) In the following program the relation Rn is dependant on the predicate P ( Z ). Therefore the list 

Z1 must be investigated from the beginning after  the evaluation of px . 
5 )  The  chapter “ Computer Processable  Programs ” was not written  any more . 

0 ’  

. 

t 

t 

I 
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11. 8) Miscellaneous .. 4 . .  , I r  F 

11. 8) a) The Operators AR , VR , ER , IIR . In the abbreviated  notation  the initial Statements ’! L 

+ * R , - * R , o * R , I * R  
0 0 0 0 

are omitted. 

11. 8) b) Representation of  Powers . .  
Common matheinatik4,representations are not only  sequences of  symbols, but rather a  composition of ’ $ 
symbols, picture -- writing,  ahd topological positioning of symbols ( e.g. indexing and  raising to powers ). L i 
The  form used  in the PK is  similar to picture - writing  as the symbol 1 proves.  Modern algorithmic 
languages  use the symbol t or ** . 

11. 8) C) The  term ‘“list ” used  in the PK corresponds best to the term “ array. ” or “ row ” in modern 6 

algorithmic languages. Something different is  now understood by ‘‘ list - processing ” , ,namely  a  method 
for the linking of different &men&  thraugh additional information (Pointer) about  the adress of  the . ; t + 

following or  the preceeding element: *- 
1 

Instead of & 

V * Z  

. -  . -. 
I 

4 T 

’ - .P-$ . . 

i 

$ 
S 

.8 

the following expression is  possible too : i 
V =% p z  

S 0 0 x 0  
t 

11. 8) d) The  Statement  Symbol ’ $4 

The  Statement  Symbol “ b ” I  took  from Mathematical  Logic. It is not included in the Syntax of the 1 P, ! t ,  
L\ PK , but is  also relevant only for co’ments.  It demonstrates, however,  my  original intention,  of  extend- 

ding the FX beyond  the  borders of  an algorithmic language. 

.. .. ., . . _. i :  t 
Comments  of  Chapter 2 

The general  programs  of chapter 2 represent  a  fundamental library. In modern  algorithmic languages 

is obvious : that all its  data structures are developed systematically on the basis  of Y - N -Values . 

The following  classifications of the programs are classifi_ed according to the structure of the  input - ’ 

values and results. 

. _.. . r  

someof these programs  can be realized only  through Special  Operators.  Here the advantage of  the FK I 
i 

- 

Normally,  the programs are numbered sequentially. In  some  Special  cases  names are added in form of  a 
sequence of characters. As already  mentioned,  comments are. not marked as such ( e.g. P 1.’18 , suppo - 
sition ... ) . 

C 
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? 

. .  

P1.32,  P& The inclusion of the '' Signal " into  the PK does not require Special d e s  as for instance { 4 . CI. 
PL/l does. The normal  result R is only  supplemented by an additional result R .  

, ,., 

t 
0 1 

P1.36 Operators like Ub often belong to the Standard Statements of algorithmic lanyages today. The , 
.. 4 . .  b 

q 
corresponding program then takes the following form : 

.. 
ai 

- int ai 

- if a & c : = b  

" .  . .$ '. - - else C : = o fi 
There are greaivm0r.e elegant-representations available for the Same program , e.g. 

. .  

Standard implerifentation . It would certainly be  possible in this simple  case to set up  a program t 
for the evaluation of m as a  function of n , 

$ 

The  expression I- Rb.9 .(.R';\,J represents a  comment. 
d ._ 

f 
I 

P1.40 The series of bits V is shifted to the right  in the direction of the higher indices, as many  steps 
0 

as V as a  binary  number indicates. 

The program is incorrect. R means ,, Overflow " and is omitted in the marginal data  extract. 

P1.104 In the  extended language of Algol 68, for instance, the Operator Maj can be represented as 

1 -,. 

1 1 
follows : 

R o : = ( V o I :  V l I V o ' i V l )  

Maj, Min,  Ord  are semantic notations. 

.. P2.8 . Note that the  letter R has  unfortunately been  used both as a Symbol for  Result ana for Relation 1 
as well. ' t  

IV. Calculus of Lists 

The use  of the term '' list " was already partly explained  on pzge 34 The following  programs  are often 
presented both in implicit and in explicit form. The implicit form is a  comment,  the explicit form is the 
proper  program. 

I This program can also be presented  without p- Operator according to P3.10. 
I 

P3.11 

P3.12 

P3.26 

P3.27 

V in th is  case is regarded  as a  binary  number. i 
2 
Note that only the explicit form is the proper program. ' 

The Symbol + means  equal in the terminology of the Theory of Sets. V ,  Z and  R are in 1Q 
4' 

0 0  0 
fact  not three different storagecapacity requiring  lists. For  such  a program the  introduction  of  a 
'' transit - value T " replacing the three lists  would be convenient.  Then the Statements : 

V * Z  a n d Z * R  
0 . o  0 0  I 
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I 

could be omitted in thc program. 
The program P3.27 is incorrect. For the condition , ' t. 

I 

z < z  

S a  0 
E ' 

0 

'! i 

must be introduced  an  intermidiate value Z . ( '  E may be influenced  by the first Statement ) . 
P3.30 Note the different meaning  of 2 and ( chapter 1, PK page 45 ). The  current value ei is 

2 
4 :  

F. 
i 

Part of the structure  index;  consequently  it  must be lifted to the main line. I 

P3.66,  P3.67 In $6 PK the selection of  specified sections of a list is performed by  Special  programs. This < 
is achieved  in A&of 68 througlvspecial declarations , e.g. " trimming *' . For the construction of a 
Compiler the method of the FK may be more advantagcneous, since it  does not request Special : 

provisions to be made. i 1 

p3.68 Here the PK is I .  ipplied as a true calculus to transform the implicit form into the explicit form. ! 
B.71 With the PK I- tried to,deve!op a " list - calculus distinct from  the " theory  of sets " in tllat. it e 

met  the needs for the.&dluti$ of practical calculating Problems. It is  an essential fact,  that  the ele - t 
ments  of  a list , whiclz r e p r h t t s  a set, are always stored in sequence. i 

L 
Y 

f 

z 
a 

V. 1) a) Grauhic  Reuresentation bv an Arrow - Dianram 

This kind  of representation  has been extended lately to the Theory of  Graphs. For practical Problems 
this theory is mostly covered by the Calculus  of Relations., as stimulated by the PK. 

P4.43 The progran is incomplete. It includes circles  spezified  by P4.41 

.., 

I 

t 

P4.48 - P4.52 The  following developments in particular demonstrate the application of the PK as a 
calculus . Implicit and explicit expressions  can be represented by the Same syntax. 

f 

I hoped that the application of the  Relation - Calculus to Computers  would  be  very effective ( see F 
for instance the graph - theory ) As a civil  engineer, 1 had in mind to use the  Relation Calculus for ' 
the formal  representation of static  constructions such  as Framework . Nowadays it is every - 1 t 
day  routine  work of  civil  engineers not only to use  Computers for numerical calculations but also. 
for the organisational Operations  referring to the structure of the System.  Nevertheless, modern 
programs  were not developed  as  solidly on  the foundation of  general  programs for relations as 
is the PK. 
The programs  are partly incorrect Referring to p' see  Page $5- [ 4 -  

. .  , .  

P4.52 Here the advantages  of the Marginal Data - Extract can be recognized. All results R f R can 
be inserted into  other programs as individual function - symbols also. 0 6  

P4.52 The encircled numbers  do not belong to the program proper, but are only  hints for the textual 
description. The  elaboration of .the program is univocally determinated by the  bracketing of sub - 
programs and the Fin - symbols. 

During the textual formulation  of the program P4.52 I realized that  the Pointers 0 were  very 
helpful for an understanding  of the programs. I had in mind to introduce this method  of  programs 
control  into  the basic syntax of the PK' This wouid  have corresponded to  the GO T 0  Statements , '\- 

C 
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,! 

I 

and the use of program  labels. But I hesitated to take this step since, at  that time, I did not have a 
satisfactory overview of the possible conkquences. 

We have, in fact, learned mcanswhile that  the GO T0 Statement can bc higllly dangerous. 1;- ’ , 1 
principle, it is not necessary  since it can be replaced by other perhaps stronger rules as  is done in 
the PK with the FIN Statement. On the other  hand,  the GO T0 instruction in many cases allows 
very elegant solutions. Therefore, we would hardly wish to bs  without  it in today’s programming ‘ 

(See also P9.18), but this alone does not lead to “stmctured programming” or “Software engineering”. 

‘ 4  

\. ‘ b  

Colnments of Chapter 3 ! i  
‘t 

& i 
I .  Programs for Arithmetic Operations t ‘ . .  *. 1 

An effective programrning laniiage n;tust  be applicable to theirogramming of the arithmetic Operations f 
down to  the smallest detail.‘This’ c b h h i o n  of mine was a result of my experiences in the development 
with the aid of mathematical logic of circuit - diagrams for  the computers Z1 to 24. .( 

I. 1) scalars 
5 

. *  

In Special  cases irrational numbers can, nevertheless, be represented accurately by a finite series of Symbols. 

Hereafter where I use “ Computer V4 ” I mean “ Computer 24 ” . OriginaUy , I numbered my models 
V1 .... V4 ( Versuchsgerät = test model 1 - 4 J. In Order to avoid confusion with the “ V - weapons ” , 
I choose the designations Z1 to 24 after  the war. f 

t 

11. General Introduction C 
The Problem of the conversion of different representations of numbers is also a widely  discussed subject f 

in modern programming languages ( e.g. in Algol68 ) . .i t 
The creation for  the “ Overflow ” is advantageous for  the precise  analysis of  the calculating process. In  the i r l  
syntax and semantics of modern algorithmic languages, this Problem is not specially dealt with, but. 
usually regarded as Part of the pragmatics of the language ( realized by a hardware - interrupt ). To me 
the reduction of programs in a Operation which I called “ rnelting ” seemed to be very advantageous for 
the  automation of programming. The program for  a  determinant of the Order n  for instance, the  elements I 
of which are constantly Zero in some Positions, can be reduced form the program for the complete  matrix 
by melting, e.e.  by omitting systematically all irrelevant Operations, e.g. multiplications by  Zero. 

Axiomatic Representation 

Axiom  Systems for ariffunetic Operations only indirectly represent implicit solutions for numbers and 
Operations with them. Indeed, axioms could generally only be satisfied by  computers with an infinite 
number  of digits. The PK , however, permits the design of programs, in which the  number of Positions 
( digits ) n is a variable.  With limes n -+ 00 the axioms can be satisfied. 

I 

i 
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I 

1 

4 

4 

P9.18 Extraction of the Square Root 
V *  j 

I took Special care with this Operation. The Computers ZI, Z 3 , a  were probably the only ones at  that ., 1 
time, in which the Square root Operation was built directly into the hardware. This is possible in an 
especially elegant manncr, if the binary system is used. The following development of  the program I 
P9.18 is omitted in the PK's English Version. In case of Special interest please refer to & G e m n  
Version. 

> 
. . .  

t 
C 

, i :  
'* i 

C 

P9.19 Extraction of the Cubic Root 
4 :  

I hadelaborated a method  for this Operation analogous to the  extraction of the Square root;  but  it 
turned out to be..too complicated to be built  into  the hardware of one of my Computer models. Today, i 
approximate mkthpdB are generally applied. * : *  

I 

* .. .. 
V. Operations with Positive Integer Decimal Numbers 

V. 1) Structures  of the'pumbers 

At that time I was aware of the direct binary Code for the conversion of decimal digits only. Later I was ' 
surprised at the very advantagepeous solutions of Stibitz and Aiken. t 

M. The Semi-Logarithmic Represehtion t 
This representation corresponds to the " floating point representation " of today. Originally I had in mind C 
to construct Computers with completely logarithmic representation. But this attempt failed  because of the * * 

very complicated solutions for  the addition. Consequently, I developed the " semi - Iogarithmic representatio " 

which only in the integer part of the logarithm was used. The digits of the logarithm behind the point are 
replacedby  a  factor b, 1 < b < B, ( B = base of the numbersystem j. In  the modern floating point 
representation this factor lies mostly between 0.5 and 1.0 if the binary system is  used. 

F 
The Special  values  are only of limited practical importance. Since the modelZ4 intentionally has ,no facilities ' 

t +  
J 

; 

*. 1 
. , "\ $ .  

. .  

I .  5 
L .  

i .  

. _ _ _  t 

for conditional instructions, I tried to incorporate as many of the Variations as possible into the hardware. 
In this I was considerably supported by the  tools which my algebra had given to me. 

W. 2) Operation with M1 

This section has been omitted in the Enghsh Version of the PK. This example demonstrates that  the PK is 
able to  scope with very complicated calculations. 

- 

Comments of Chapter 4 

Onerations with Alnebraic Expressions 

f 

L 

f 

t 
f 

Lastly, at this point there was the  opportunity of dealing with normal numerical programs, e.g. solutions 
of linear equation Systems, matrices etc. But to me these Problems did not seem to be very urgent then, 
since it was obvious that numerical Problems could be programmed with the PK without  any difficulty. 
Moreover, in  the isolated village Hinterstein / Allgäu I was more concerned with othcr problems. I wanted 
to investigate the  then almost unexplored, more complex Problems of calculating. 

I 
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* d  
4 
’* 

One  of these  problems seemed to be the algebraic handling  of  formulas called “symbtdic  calculations”  today. ! 
Ri&t form the start of my  endeavours  I llad  been attracted by the targct ofgeneralizing the term ‘‘ calculating ” ., i 
beyond numerical  problems. 

I Soun  realized that I had  entered  a very  wide and  complex field. It was implossibleto explorejt in a  short * 
time to  an extent which  would  suffice for practical use. As a consequcnce  I  concentrated On demon&at?g 1 
that the PK was qualified for performing  symbolic calculations. i 

In the foilowing chapter  only the rather simple propositional  formulas are  discussed and this only for 6 8  

some  typical  examples. * 

An extraction  of.this  chapter was published in Archiv  der Mathematik, Band 1, Heft 6 ( 1948149 ), Verlag i 
G. Braun  GmbH  Karisruhk. ._ .. ‘ 1  

I. 1) g ) Development  of Programs I 

To me this Problem appaared to be of the greatest importance.  Instead of.the term “ Compiler ” I used tde t b  , 
term “ Rechenplanfertignng ”( program production ) , I intended to reach this goal by means  of 
symbolic calculations. In  my  imagination it should have  been  possible to establish the rules for a Compiler - 1 
for the PK itself. Later the ma&mati&ans went  other ways. The first programming  languages such as Cobol, t 
Algol, and  Fortran were noi suited fur.this purpose. Only  some recently developed  languages, e.g. Algol68, 
contain  some  of  the  required facilitiei. 

. *. q f t 

I 

q 

I 

“\ 

j 
i 

As is well known, the development  of Compilers required  tremendous  investment in manpower,  time  and 6 
money. It would probably have  been much  more advantageneous to exploit the facilities of the PK form the 
very start of  programming. 

- I )  

1 
11. 1) Negation symbols have also to be regarded  as  Operation  Symbol ( monadic Operation ). Today  it is a 
comman practice to take the Symbol 1 to avoid ambiguities. F 

11. 2) This is a recursive definition. The  formal expression for  Sa ( X ) demonstrates,  that no “ mctalanguage ” 
is necessary  in the PK. For  such definitions the “ Backus-Naur-notaticjn ” for  example is often used. This 
again  Shows that the PK incorporafi’s a true calculus. q.\* 
Page ( 175 ) The d e s  in terms of natural language  are not precise enough in the sence of  modern  formal 
, ’ .  grammars. i t  
Page ( 180 ) The value E represents  the “ Klammerbilanz ” ( balahce of  brackets ). Later  Rutishauser 

e 

introduced the teml “ Klammergebirge ” ( bracket  mountain range ) , for this. I 
f 

Page ( 184 ) The Order of “ ranks ” of the Operation- symbols used here in contrast to the common  habit 
of utilizing the  term ‘‘ Bindungsstärke ” ( priority of  Operations ). 
In  programs, the higher rank corresponds to the block or  program  of a  higher level. This wafmy ‘9 
reason to introduce the “ Order of ranks ”. Besides of that  it is comman today,  that the symbol I\ 
has a  higher priority than the Symbol V . 

I 

C 
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Page ( 189 ) Remember that the errors in the original mansucript have intenionally not been eliminated .: 
f in this publication. 

Today, we know that the simplification of  formulas is one of the most difficult problqns of symbolic 1 
calculation. ,In most  cascs it is not possible to formulate an algorithm simple enough for practice:,In ‘ 
such Operations the  experience of a  mathematician plays  an important role. Today we use the terms 
‘‘ Artificial Intelligence ” and “ General  Problem ” Solving” for the definition of such  Problems. The 6 t 
Progress in this field is relatively  slow. C 

Yet,  I am donvfnw’d that these efforts will  have great success  in the future  in.spite of  some disappoint 2 
ments.  Perhaps it mbld be more effective to exploit first the facilities  of the PK and thu’s obtain  a 
solid foundation. hloreover, the Computer hardware so far  has not bcen  designed to handle  such Problems : . I  i 

conveniently. It should be worthwhile, therefore, to develop hardware  which  would be  well adapted  fo, , 

the  use of PK proqams. 1 

. ’ ,. - .  
q 

1 .. . 

f 
. .  \ 

T t 
. .  

11.4) Introduction of the “ Machine  Mode ” f.Maschinenform 1 
As already  mentioned, I had.‘h,mi$tl to  extend the PK beyond  its original scope,  with the aim of  compilh f 
ing  programs in particular.‘For Ws purpose the “ machine  mode ” provides a  good Start. The  later develolj - 
ments of algorithmic languages went this way, too. E 

But rnp relevant investigations began only sporadically and not systematically. Unfortunately,  I  had to  - + 

stop th is  interesting work for lack of  time  when other Problems  began to occupy me completely. 

- b  

L’ Ir 
.‘L 

C 

t 
Page (232 ) The  form is analogous to  the so called  “Polish Notation”.  But that was unknown to ‘ 

me at  the time. m e  form is not identical with  the so called  “Praefix-Notation”. . .  

‘ 1 . .  
Page ( 198 ) Pay attention  that the Symbol I ( X ) is used hear in another sense than  on Page 50 

Comments of Chapter 5 

Chess  Programs 

The  formulation of schematic  thinking processes associated with chess has  been  a lted task which  stimule 
from the very  beginning  of my investigations in general calculation about 1937. To scope  with it, I 
learned to play chess.  However, I never  became a good player  and,  indeed, that was not the aim of my 1 
engagement. 

I soon also realized, that the program for  a good  move  is  very difficult to design. First it was  necessary 
to create a  foundation for further proceedings. Therefote, I was hardly ever occupied  with  a “ Theory 
of Games ” of the kind developed  by John von  Neumann. By the way, I  had in mind a method, which 
today is called “ Minimax ”, to evaluate the best move.  But I realized  very soon,  that this method was 
of no practical importance, since  even  large electronic Computers are not capabie  of performing the 
necessary  volume of Operations. 

i 

In 1945 , when I developed the PK in a e  isolated W a g e  in the Alps, I did not even  have a chessboard ‘ 
at my disposal.  Moreover, I couldnot find anybody  in the Wage  to  play  chess with me. ; 
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This Situation may excuse some errors that I incurred, e.g. a false interpretation  of  the rule to strike , ,, 

" en Passant " . But in the  contcxt of the PK this  did not matter. I believe.that the chess - programs t 
alone prove t he  capability of the PK to handle very complex logical Problems. 

' i r  
When S heard of  Progress  in this field later, 1 was surprised that this had been possible without  the u3e of 
a universal algorithmic language of the kind of the PK. As far as I know, chess programs were not  establispd? 
in one  of  the algorithmic languages than exsistant but directly in maschine Code. I do imagine, that this is a .- 
rather compliczted m'ethod and that a language  like the PK could facilitate such progrmming most 

. effectively. Certainly; the PK cannot furnish the key for  the defeat of the world chess  Champion,, like I 1 

, .  . .  ; 5  
! ; ;  

C '.. 
1 4. I 

+. 

f 
f 

. .  
had dreamed ofin'*l!93$i. 

% -. ' ?  
\. J L :  

Anyway, essential  Progress has been achieved recently. Howevcr in t h e h a l  analysis we not only need , ,E T f L  
more powerful hardware. 

Undoubtedly, there are a lot of important goals to be aimed at  other than that of playing chess with ; 
t ' .  

& T t 

Computers. 
L .  

C '  Q 
t 

F 

I 

i 
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. .  
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.$ 
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f 
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Chapter 1 

Introduction 

Note : The reader should have a general  knowledge of the  author ’ s 
! i 

; ; L  
STATEMENTS OF A THEORY OF GENERAL CALCULATION 

? 

I. The Problem 

The Plankalkuel” s‘ai@,is, the formal representation of any calculating program ,( Algorithm ). These I ?  I 

programs have to comply wvith the foliowing conditions : 

1) Input - variables and results must be clearly specified. j 

2) All Statements for atennediate values and results must be  given in explicit form so that  the results can, t b  

I 

, .  r ‘. . 

bc calculated afte.r the insertion of  the  input variables without additional tranformations  that were not 
includefin the program. . . .  

C. 

The programs can be of a gseHtwr$$y. In the PK “ calculatc ” is dzfmed as follows : t 
. P  i 

f ‘‘ To calculate new data fonn$en  data according to a program ” . 

In this book the! whole field of calculating including “ fmed programs ” is investigated . f - 

11. Establishment of the PK Programming Calculus 1 t 
1) General Notations 

Where numbers are used to  distinguish between elements and to Order them,  they are G t t e n  in 
, the decimal  System. In this, a  notation is prefened, which allows a simple transformation of the f 

numbers into the binary System, e.g. 0, 8,  16, 48, 64, 72, 128, ect. ( all powers of 2. ). 

Subdivisions are marked by periods, e.g. 1.3,2.13.1, for  the specification of components. . 

In Order to avoid the  frequent  repetition of the  notation  for  a set of programs e.g. the chess - 
programs all sub - programs, data - structures  etc.  the symbol A is used  as a Substitute for  the - 3  
set of programs. .PA. 13 for  instanceis  the  notation for program 13 of the set of programs A. If 
this Special program is used outside of the‘specific set , then the symbol A has to be replaced by 
another notation,. 

. .  

t 
$ t  

I ’  
Further,  the relationless symbol 0 is introduced for a blank Position. In blank Positions other 
suitable data  my be inserted which are not necessarily related to  other Positions bearing the  symbol I 
0 . The 0 symbols may, however, be filled in by digits and numbers in Order to interrelate  them 
within a program. 

I 
,2) Data and their Representation 

The occuring data can be of varying types, for example Y--N - Values, numbers, lists , etc. The 
t e m  “ algebraic dimension’” was already introduced in the “STATEMENTS” . (,G (’4 44 G P 

l 2  

. .  . - .  .. 
f 

. - .  

I 

i 
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I 

I 

? 

* ,  j 

The distinction between  the different data is characterized as follows : 

a) Data Structures 

: . .  . *. 
C \ 

Data Slructure is a  structure made up by component  data  wherein their meaning  is not considered.. ~ 

There arc data of futcd and of  variable stiucture.  Structure  Symbol Si  are attached to'eacb 1 
notation.  The  formation of composed structures is then perfoned by means of " structure' i 

equations " , whereby  already defined structures are  used. 

The  symbol 'So is  assigned to a Single  Y-N-Value. A sequence of Y-N-Values  is  given by the 

9 ;  

C Z L  
4 :  

notation , S1:n. The  structure - equation reads : 
' \  . \. . .'-. . .  \ 

,. S1.n. = nXSo 

In this way it is always  possible to analyse the composition  of  data , even if the  structures of f 

data are very. complicated. 1 *  
i ? I; 

Another strbcture iymbol is required for " indetenninate " . If, for instence we  Want to state, 5 
without specifying q e  stA.iture of the  elements, that  a not;ltion represents-a list of  n elefiints,j 
then  nXa is its  formalsrfRrescntation. * 

. 1 
then  can be subs€ituted by any  structure symbol. t 

of the elements are left Open ). F: 
0x20 represents the structure of a " list of pairs " wvherein the  structure of the elements is * 

not fxed  but is the Same for the two  elements of a pair. 

.-_- _ . ~ -  - . . _. 

U 

nxa is the general structure  notation for a list ( the length  of the list and the structure 

t 
elernents of a pair. 

2XnXu is not  a list of  pairs but  a " pair of lists " . 
OX ( u , ~  ') represents the structure of a list of pairs with different structures for  the  neighbouring 

f 

The  notation N (,V ) specifies the  number  of  elements N of  a list V ( number of elements 1 
of the first level ) . 0 0 

b) Limitation  of Data 

Data  Limitation is effective if the variability of a  structure is not completely utilized for  the 
representation of data. E.g. four  binary digits  are required to represent  a decimal digit, but in 
this only  ten  of the sixteen possible  Variations  of a series of  four Y-N-Values are utilized. In 
such cases a limitation formula defines  which types  of  data have to be considcred. This u i t a t i o n  [, .- 
is represented  by  a B with an index. 1 

If the Y-N-Values  of a decimal  digit are represented by  ao, al, a2 a3, the lirnitation formula 

reads as follows : - -- 

.. 

a3 V al V a2 

This propositional expression is only valid for the binary numben 0 to MOL. 

Another limitation is the conversion  of components into constants. It may often be convenient 
to supplement the elements of a list by their numbers  within the list. So we produce a list of the I 

i 
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indices  of the components of a  data structure. This list is independent  of the Variations  of the elements 
( see  chess - programs page 217). ' ,  

C) Types  of  Data L 

8 1 ' 1  
- . 4.. . 

Notations of different meaning may be  assigned to the Same structures and limitations, e.g. the ' +  

Coordinates X and Y. Generally , it is not necessary to distinguish between  them.  Should it be 
advantageous,  however, then  the  type - symbols Tl , T2 ... are introduced. # F  

i 

d)  Modes of Data (.Angabt& ) . .  , '. 
A structure '%d pbssibly a limitation or  type designation  is  designcd to every mode  of data. Independenthy j 
of that,  the'componentsmay haGe different meanings e.g. numbers  in  half - logarithmic  notation. { 

All these notations  can be combined by the mode - symbol Ai. If a  notation is specified by  a  modes - 
symbol e.g. A l e t h e n  a separate notation of the structure is not necessary,  since that is contained in 7 t 
the symbol Alb. Mode'- symbols can  also be  assigned to  a group  of different analogue structures. ' 
Numbers for instance c q  be regresented by different structures ( binary, decimal. etc. ). We are thtn 
able to introduce  a  specialqr$ol e.g.  Ag,  see chapter 3, page 148 , which only states, that  the  data - 
mode refers to a  number,  withdut  determination of its structure  or type. 

k 

t 4  
. .  e 

i 
C .  

An indeterminate mode - symbol (Y can be now be introduced. b 

e) Components of Data ! 
The  parts  of which data are composed are aalled components.  The  composition is represented  by the . 
structure  notation : 

S1.3 = 3Xso r 
This means that the structures S1.3 is composed  of three components of the structure So (Y - N - ' 

Value ). These  components are designated  by Ko, K1, K2. F 
The  components  may themselves  be  composed. The integer for decimal numbers is represented by the t t  
equation 

nXS1.4 = nX4Xso 

Ko, K1... Kn-l represent  the single  decimal  digits.  These  are  themselves composed as follows : 

KO.O .Ko.l Ko.2 KO.3 I 
K1.o K1.l K1.2  K1.3 

In this way the notation  for  the  components  can be subdivided to any level by  the insertion of 
periods. The  sequence of the symbols in the  structure  notation is relevant. For example : 

L 

nX4XsO * 4xnXSO 

The first notation represents a list  of n elements in wQ&h each  element is composed  of  four Y - N - 
Values. The  second  notation represents four series  of n Y - N - Values. 

I 

. .  
i 
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In  the first case Ko has the structure S1.4, and in the second case S1.n. 
. .  

1 ;  
In  the foregoing  examples the components were homogcnuous. But this is not ne,cessary. A sign 
may  be  attached to  decimal numbers for instance. The structure is represinted by ihe iCpre3sion ! ! 

i 

( So, nXS1.4 ) ? L  
Now Ko is  of the structure So, and K1 of the structure nX1.4.’ It is not possible to subdivide F 
Ko into components, but  it is possible with K1. [ 

Note tkat,*i‘;l3nnbtation .- composed of n  components, the highest index is n-1 since the  numbe- ’ 

1 

1 

’. . j 

ring of the components stRrtS’ with Zero. 

Reuresentation of  Data 

The  indetermtnate  representation  of  data is  accomplished  by letters  with in added  index, e.g. 
V1 , Z3 , etc.’The composi.tion  of  several data is indicated by bracketing  and  by Setting commas 
between them. 

.’ 
\ - ’ n\ 

- .  I 

. V  
* -- ( a , b )  = C 

In  notations of this kind, the component  with the lower  index is always,written first. Also  when 
numbers are represented digit  by  digit  in indeterminate  form, the Symbols for  the  lower  powers 
are written first. 

The  determinate  representation of  Y-N-Values  is normally achieved  by the Symbols “-” and 
t ” . For numbers digits  can  be used, ( e.g. the decimal  digits 0 to 9 or the binary digits 

0 and L ) . For this purpose,  data have to be decomposed  according to their structure definition. 
When numbers are represented by the symbols “-” and “ t ” the components  with  the 
lower  index are  again written first. However,  when numbers are represented  by digits, the digits 
with the highest  index are written first, as  is usud practice. Consequently, the following represen F 
tations  correspond to each  other : 

LLO = - tt 
U)LO = -t-t 

83 = LOOO,OOLL= ( ++ --, ---+ ) 

This requires careful Observation. 

For the indeterminate form of  an Y-N-Value the symbol ‘‘ o ” is introduced, but only in context ’ 

I 
~h Cr-** arid 66+** . a = t - o for instance, means, that Ko ( a )  is positive, K1 ( a )  is 

.. .- 
negative , and that K2 ( a ) may have any of the two values - or t. 

The  condition  that  a  binary  number X with  four digits is even is then represented as follows : 

X = - 000 
Only the component Ko ( X ) is determinate here. 

The  symbol “0” can generally be taken as a Substitute for  a series of Symbols “ - ” , even . , 
if this does not represent  a  number. 

P 
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I 
! 

g) Representation in  Lines ! i  
Seperate lines  are  used to characterize clearly the various notations which belon&to thc data, as F 
for instance variable - index,  component,  structure etc. ' , , I :  

'! i 

First Comes the main line for the representation  of the expression  in the usual form. ' 

The  next line  serves to distinguish betwecn  the different variables  by means of indices ( V ) . 

Another' li'ne i ems   t o  specify the components  K of the variables. 1 :  

i I  

.. ..- 

6 :  

C 
E * .  .'.. . 

\. 

The  expression K1 ( V3 ) ( component  1  of variable 3 ), is written als follows: 

;r V 
. .  3 

I .  

2.3 a 

The last line ServeS for the specification of  the  structure,  type,  or  mode of the  data ( S = , . ~ 

index,  or A = index ) . t 

I 

Example : 
2 variable Z4 
4 

f 

2.3 component 2.3. i+ 

t 

0 stmcture 0. 

The structure - Symbol refers to  the component.  The Single lines  are marked by preceding letten, F 
V,K,S or A : 

, Z A Z  
' V 4  2 

. '  K 2.3 
S I  0 0 

If a  component is not derived from  a variable, then the component  index  Position is 'blank. 

The  preceding  letter S can dways be substituted by A ; inverse Substitution is not perrnitted. 
In such  a case , the. indices already used for structures may not be used for modes as well. The 
structure - Symbols So, S1.n for instance are identical with the Symbols Ao, A1.n. 

I 

With line representation  it is  easily  possible to distinghuish between the different modes  and 
types of data. With it,  it is not necessary to use different types of letters for different types 
of data, as is usually done, such  as gothic  letters for vectors. Such.practice would not be appli - 
cable in the Plankalkuel, because of the large number of different data - types to be handled by 
it. I 

i 
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1 

Constants with a  specialmeaning can be  assigned to the  various types  and structurcs. A constant . 

is a Special  .value of the Set of possible  Variations of a variable of a given mode o\; ;tru&re ."( ' I T 
They are marked by a  C  with an  index. The  index  normally refers to the structure  or type. 

i 

- f  
4 :  

t 
i 

i) Suuplernentation of  Data  bv  Numberinn af Components 

Any  composed  notation can be supplemented by a  constant which  is represented by a list of 
indices eof the  components.  These values  are  specified  by I ( ) . ( Index of .... ). 

This is important, in  Order io learn  where  in a list an element with a Special property is situated. 
( E.g. in chess  Problems : " Ille Square occupied by the  white king " ) This Problem  can  be 

i 

solved  by the 'supplementation of the  notation by a list of the indices. But in practice it is not t i  ~ 

I 

. .  . 1 )  *.-. I .- r \  

.. .- 

' always  necessary to  perform this  Operation,  since the symboi I ( ) is  well defined. 

C '  B 
j) Data  of Fixed and V?riable.Structure t 

The whole Set of Al possiBle  Variations of a given mode,  characterized  by structure, type  of 
limitation , forms the Set of possible  values , If the structure is fwed , then all elements  of this f 
Set are  of the Same structure. If the  structure  of the data is variable, then the elements  may g 
have different structures. This is, the case with lists of varying length ( e.g. in chess Problems : 
List of the acting pieces ) . ' 

Mostly, the variability of the structure is confined by the  number of its components.  Then the 
stmcture -Symbol  is not  a simple constant  but is itself a variable.  These  variables  are relevant in 
variable  programs. The variable is then  composed of the "proper variable" and  the " structure - 
variable " . The  structure - Symbol here influences the Course of the computation. 

*\ t 
I 

. .  V 

- ' &b 

t 

' 3) Fixed Programs 

a) Notation  of Pronrams 

j The programs are indentified by the letter  P  and an index ( e.g. P1.10 ) . 
I 

Mostly, the  index is composed, wherein the first component indentifies the programs group. 

Programs may be of any size and  may  produce  many results. I 
b) Variables of Programs 

01 ) Input Values 
These are identified .by a V with an index. 

8) Intermediate Values 
These  are of relvance only  within the programs. They are identified by a 2 with  an  index. 

7 ) Constants 
Conitants are part of the program. They are identified by a C .  and an index. One has to 
distinguish between general constants  and Special constants. The Special constants are inden 
tified by  the characters Cp and +n index.  They are  valid  only for the specific programs. - -  

C 
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6 ) Results 
.. . 

Results are  values  which  are calculated as functions of the input - values  by  means a program. ? I 
They are identified by a  R and  an  index. 

'! i The identifiers V, Z, Cp,  R are specifying variables and  located in the second line ( V =  line ). 
t : L  

C) Range  of Indices 

The range  of the indices  of the variables  is confined to  the specific  program for which they are i 
defined. The yaqc 6, of  program one, therefore, is not identical with the value Z3 of program 
two. If results of'i*$rogram are used in ahother program they  then have to be identified by the 
index of the source - program. R1 .I0 ( ) for instance specifies the result with thc index o of I 
the program  P1.10. 

The  numbering of the .V - and R - values  has to Start form zero. The ranges  of the indicts of the L 

program ( Pi ) , and a lso  the structure -, type -, and  mode - Symbols  are  valid within specific . , 
programs as well as outside thpm. t 

; 
d) Marginal Data  Extract i i 

Marginal Data  Extracts of a program represent the input and Output  values. Their  structures  and C 
types are spccified by  marginal  data extracts. On the left side  of a marginal data  extract an 
expression  R ( V  ... V ) ,  is located which  lists all input values and  on  the right side  is located 
a list of  the results : 

i 

r t  
0 

;r I :  T 

. . , "z 

. *  

0 n t 
R( V 9 V ) 4 (  R 9 R )  

V 0 1 0 1 F 

F 
S 1.n 1.n 1.n o ' 

This data  extract means: The program  has two  input values V. and V1 of the  structures S1.n 
and  two results Ro and R1 of the structure S1.n and So respectively. 

Marginal Data  extracts  may be established for several  programs in common.  They are not  Part 
of  the program, but only  coordinated to it. 

i \  

.! 

~. 

e) Program Equations and the Symbol " Results In " 

.A Program consist of a  number of  specific explicit program equations. On the left side  an expression 
with input values or already defined  intermediate values  is located, on the right  side an intermediate 
value or  a result. It is also possible to calculate the various components of a result separately. The 
two sides  of  the equation are separated by the Symbol " =$ " . This  Symbol may become identical 
with the Symbol " = " ( equal ) or the Symbol " - '* ( equivalence of propositions ) . . For this 
we have the following d e s  :' 

i W 

a )  Always the value on the right  side  of the Symbol " 3 " is the one to be calculated. It 
never itself represents an Operation. 

I 

i 
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. .  
1 
k f 0 ) If the Symbols " = " or " appear  within a program equation,  then  they  represent , 

Operations 

1 3  $ L  
S 1.n 1.n ' o f i t  i 

i 

z ' t  1 * 2  t i  

specifies, that Z3 becomes positive if V, equals V1 . ' 

-y ) *If.the.sme.values  appear on both sides, then the values  are not  ident6 : I : / ;  C" L ' .  \ - .  .'. . I 

3 3 

specifie4,that the old Z3 increased by 1 results in the  new value Z3. 

t 

t i  Y t 
. .  L 

Such an equation  can.be replaced  by a  more precise equation as  follows : F .' e 
t 

Here the values on  the  two sides are distinguished  by  subindices. 51 
. "  

6 ) If the Same value occurs  in several equations  repeatedly on the right side, then  the  last 
calculation of this value is good.  Preceding  values  become  invalid. t 

The  items 7 ) and 6 ) correspond to the method of using  Storage  cells repeatedly which the 
author  already realized  in  his Computer V4 , F 

The rule implies, that  the sequence of program - equatiins may not be  changed. i 

Concerning the use  of brackets, the Symbol " =) " has the widest  range ( an exception is the + r t  
Symbol " 3 " , to which reference is  rnade later ) . Two program - equations  standing side by 
side are separated by a vertical line. t 

f ) Subprograms 

Programs may be  cornposed of subprograms, and these  ag+may  be composed of other  sub - I 
programs . In this way  programs and  subprograms  can be nested  manifoldly. 

In principle, any  program can be used as a  subprogram. To define this, the results of  the  program 
which is to be  used  as subprogram are  shown  followed  by  brackets.  Between  these the variables 
V, , V1 , of the subprogram  are substituted by those which  are to be inserted into the sub - 
program within the frame of a main  program. Thus we produce,  an  expression  such as the 
following : 

R9.1qZ ) =$ Z 
V 0  0 1 
S 1.n ' l.n+l 

I 
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which states  that  the result Ro of  the program P9.10 calculated with  the  linputwalue Zo ./ 'U\ 
results in Z1 . ' t 

The  term R 9.10 ( ) is used as  .a function'symbol with  one  blank Position. l%e'num%er pf 1 
blanks is equal to the number of blanks in the corresponding program ( in this instance P9.1'0 ) . t 
It is obvious that tlle structurcs of  the variables must coincide with those of the program . In the i 
exampie meitioned above the data  extract  reads : 

! E  
P 

0 

? L  

I 

I 
follows : ;r 0 'V 

i 
4 

If the result .R9.10 ( Z ) is also of interest, the  two program equations  can be combined as ~ 

. .  L 

Rq.lO('Z ) =$ ( Z , Z ' . )  
V : .  i, 

* ' 1-.n S '  
1 2 
l.n+l CS 

L .  >..& 

In this way any program  can be  used  as a subprogram. The Symbols for Operations and  functions 
also in some  way represent subprograms. I 

-.) 

L '  e 
z 
P 

; 
'i 

t 

If  Special  programs are to be used as subprograms  within  a Single main  program only, then  the 1 
following  possibilities , exist .: 

a ) The subprogram  is established a s  a  normal program, the  only  difference being that  the 
Symbols " P " and " R '* are replaced  by " PZ " and " RZ I' ( analog to  the f 
intermediate values '' Z " ) . Indices 0, 1, 2 ... are attached to the symbols " PZ " 
and " RZ 'I to distinguish between different subprograms  within  a main  program. The * F 
range of these indices is limited by the main  program. Consequently, the program PZ1 f . 

of one main  program is not identical with the subprogram PZ1 of  another main  program. . 

of the main program  are also valid within the subprogram.  Accordingly, i t  is not necessary i t  
to cllange  tlle notations. 

Such  programs are marked  with  a U and an index.  They refer to a main  program. 

t 
. P ) The  subprogram is established as Part of the main  program. The  notation of the variables 

g) Operation Svmbols. Function - Svmbols i 
Operation Symbols can be  used  in the usual way instead of the program  Symbols " P .... " or 
their result Symbols " R .... " . This is convenient for the handling  of  programs of  general impor - 
tance, e.g. propositional operations, or arithmetic Operations. 

I 

'Corresponding to  the predicate calculus the results of programs  can  also  be identified by a series 
of characters, for example : 

Pos ( X ) meaning '' X is positive " 

I 
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I 

? 

ll 

h) Remark 

The programs discussed  in section 3) aie all futed which means that  the sequence of  the Opera - ! 
tions is independent of the Variation of  the  input values. . .. 4 - .  'i 

, 1 :  
' f  i 

' ; 4) Quasi fixed Programs 

a) Definition ' t  
; 

Programs  are. tenned quasifixed, if they allow some Variations independencof tl2c' real  variables. This 
means;  !liat.the  Variation of a program can  be pcrformed independently of the real calculation. i 
The Variation rdf the.,program,-results in a futed program. Because of their properties such programs ,' 

I ' *  

are called quasi-fured. 1 1  
i 

The variation*,of the programs is a function of the " program variables " which consist of I ' 
variable  Operation  Symbols, program Symbols, stkcture Symbols, etc. These " program - variables '' t 
in relation to the real  variables represent another level of Variation.  Level 1 ' can  be  varied in - F 
dependently of levei.$2, butlevel 2 depends on level 1. It is  possible to distinguish between &e 2 

t 

following  cases : - . . 

b) Variable Operation Symbols 

h 

.* 

* .  1 . I\\ 

* *_ 3 
L 

If several programs of  the Same structure ixist, such as : 

V A   V * R  
o l l  

V v V j R  
0 1 0  

I 
- *  

i 

F 
V - * V * R  ~ -. 

0 1 0  C 
then it  is  possible to introduce  a  common variable  Operation  Symbol " 6 '' : 

' !  

V b V ' R  
V 0  

0 0 s o  
1 0 

The Symbol '' 6 " may be substituted by any Symbol for dyadic Operations with Y - N - Values, 
which represents propositional Operations like n, V, - , + . 

In this example the  number  of  the Operation  Symbols allowed results form  the  notation  for  the f 
I 

.. ._ 

structure So of the variables V and V . 
. o  , 1  

If this number is to be limited to the Operations for which the associative rule is good, then 
the best procedure is to list  the Operation - Symbols  allowed. 

The  data  extract  of such programs must also contain the Operation - Symbol as a variable. 

R ( b , V , V )  * R 
V 
S 

0 1  0 

0 0  0 

I 
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1 

? 

In Order to specify 'the different levels  of  Variation more 

( R ( 6 ) )  ( 'V ,V)  * R  
V 

0 0  S 
0 1  0 

brackets are used : i t  t 

It is now clear that the pertaining program  is primarely  a  function of b , the result of which 
depends  on 'V and V . I 

.o 1 I 

In the'Bbove yeritioned example no structure - Symbol  is  assigned to the variable  Operation - 4 5 
symbo1:The s'tGcture of Operation symbols is normally S1.n. In cornplicated cases  Special  de - I 1 
finitions for the structures of  Operation - symbois have to be introduced. If there is more  than 
one  variable  Operation symbols are introduced to distinguish between  them : 

A 

C t 

o 1 . .  i 

These  indices are inskrted t i t o  the second  line. 
* .  

. I  

C) Variable  Program S ~ b o l s '  

Variable subprograms in the Same way as Operation symbols can be established. A variable prograh - 
Symbol "W' is introduced. 

1 
d)  Variable  Negation Symbol 

Frequently, programs differ only in that Y-N-Values appear negated or not negated.  The  two 
propositional Operations,  equivalence  and  disvalence, for instance can be expressed  by the Opera -t 
tions, conjunction  and disjunction , as follows : 

e 
f 

( V A V ) V ( ~ A V ) *  R t 
0 1  0 1  0 

These two  programs can  be combined by the  introduction of a variable U of a  higher level : 
. .  

( ( V A (  U -V ) V ((V A ( u " v ) ) = $  R 
V 

the second. The  data  extract  for thii program is : 
If U is substituted by " + " we then get the first formula if n is substituted  by "-" then 

0 0 0 0 0 S 
0 1 0 1 0 

I 

t 

In t h i s  case the structure of U can be indentified by So. 
I 

C 
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4 

A variable symbol V with index could be  used instead of U . However, by taking U we ' ' 
make apparent that the variable  is one of a higher level. t 9 ;  

* .. 4 * .  

e) Variable Structure Symbols , 1 :  

C !  

* $  C 

In the " Statements ... "'an example demonstrated that programs can assume different meanings )C 
by varying the  algebrdc dimension. ' 

Determinant.representation can  be used advantageously for real numbers as well as for propositions. j 1 

The two. p,dgams differ only with respect to structure Symbols and Operation  Symbols. The ! 
two  variationiiiate .the follouring form : 

a ) Determinant of degree'2 
for real numbers : A = 

;r 

. .  
. .  

4 

' R (  V; V, V; -k ) *  R 
L * . . '>,. 

V 
8 8 8  8 8 A 
0 1 2 ' 3  0 

V X V - V  X V * R  
V 0  3 1  2 0  
~8 a 8  8 a  

v v  
0 , 1  

v v  
2 3  

The symbol A8 Stands for " real number " . 

B Determinant of degree 2 for propositions ; 

R ( V,V,V,V ) * R 
0 1  2 3  0 v l  S 0 0 0 0  0 

V V V A V V V * R  
0 3 1 2 0  

These two programs can be combined by the  introduction of two Operation  Symbols 
'' 6 " and '' 6 " and  a viiable mode - symbol '' 01 ". 
0 1 

R ( a, 6, 6 1) ( V,V,V,V * R 
1 2  0 1 2 3  0 

A a a a a  01 

Table of Variations : 

t k  
't 

t ? 
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( V 6  V )  6 ( V 6   V )  * R  
V 

( Y &  S 
0 0 3  1 1 0 2  0 

, &  & 

f )  Variation of the Number of Components of a  Structure 

Frequently,  only the number of  the components  of  the  input values are varied. The  programs 
then differ by a different number of repetitions of  analog  program  Parts. 

The eIeventa$-ase.is  that Qf a structure S1.n or  of  a list nxu . The  representation  of  the 
programs  requires the assistance of repetitive programs. ( This is reffered to  later ). 1 

* .  . \. - ' .  . 

g) General Cons~derations  about  Variations of  Programs T t 
In the examples mentioned before, the Variation of programs  is effected by the insertion of * 
variable  symbols.  Much more  complicated Variations  are  possible  however . . r  

L X 

'P 

* . 1 .  - ' h 

For instance, in piogram' f'dl-8 ( extraction of a Square root, referred to  later ) the number  of ; j 
Positions of the result has to be evaluated  before the program for  the Square root itself is cal - : 
culated. F1 

This type  of program leads to  the variable  programs; Fixed  and variable  programs differ in  that , 
variable  programs  use  program  var3jbles as well  as  real  variables. hP 

* .  

5 )  Variable  Programs F *  

In variable programs the input variables influence the Course of. the calculation. 

First, the program  variables  which  were  discussed  in the paragraph  covering the quasi futed programs, 
such as variable  Operation - symbols,  structure  symbols, etc. can be functions of the real  variables, 
It is possible that the type of  an  Operation in a program - equation is only calculated during  the 
Course of  a program. Such cases  are  analog to those in section 4 ) . 

F 

In  addition , it is  possible to distinguish between the following typical cases : 

a)  Variable End  Symbol 

4 

I 
There are  programs,  which can be terminated before  being completely  computed if the result 
is already clear after Part of the program  is executed,  or , if a  continuation of the compu - 
tation  appears to be irrelevant . For instance, a disjunction with several components  can be 
terminated as soon as one  Proposition turns positive  and a conjunction as soon as one  proposi - 
tion turns negative . 

* , To indentify " end " the variable end - Symbol Fin is introduced. It is put on the right side of 
a program equation.  The expression to the left of the Symbol =$ represents the criterion , that , 
the  computation may  be terminated. 
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For instance : t 

V v V v V * R  
0 1 2 0  

Y :  I t aF in  

V Z V ; . * (  V * R )  
0 1  0 0  

: z v v * z  W F h  

$ 
1, W * -  
E 

* . <  .. \. 0 1 0  3 

t \  

. .  * 1 :  

' 2 'v . .V  r* R.. 
0 2 0  

This kind of iepresentation is advantageous only..if repetitive programs are applied, or, if the 1 :  , 
propositions are represerited by complicated expressions. 

Generally, the  rangc'bf the\ symbol Fin Covers the whole of  the program within which it appears. 
If, however, it is*in$nadc?to skip, over only Part of the program , then several program equatio& / .P 
must be combined to forrh a Part program which is marked by brackets. The r a g e  of the symboj C 

FINis then limited by  the brackets. 

Such program parts can  be nested. The symbols Fin' , Fin2 then determine the range to be 
limited by  the first or by the subsequent enclosing brackets. Tllis is especialy important when I 
using repetitive programs. 

t 
b . .  I 

.* L! 

B . "  

Correspondingly, an expression following the symbol ;f is also considered as a Part program with # 
a fxed range ( See section 5 ) b ) ) . , 

b) Conditional Program Parts 
e 
t t 

The  computation of program parts can depend on conditions represented by an expression whichi 
depends on the variables. The condition and the conditional program Part are separated by the 
symbol s . The dot indicates that this symbol does not identify a propositional Operation ( impli - 
cation ) . 

b 
A simple example is the  computation of Maj ( V ,  V )(the larger of  two values V and V ) . 

0 1  0 1 I @  
Maj ( V ,  V ) =. R 

V 
8 8  8 K 
0 1  0 

V Z V ; t (  V * R )  
0 1   1 0  

In this case either  the first or  the second program part is cornputed. Such  conditional programs 

i 
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may be multiply nested. 

C) Variable Indices 

The indices of the symbhs “ V ’* , ‘‘ z ” , “ R ” , ” K ” , etc. cin be made to depend On 

variables. For instance, in  the expression C 

-_ 

the index of  the  component is  variable. Now these variables can themselves be composed Or 
supplemented’by indices. The variables  are wirtten on the main line and connected to their 
correct Position by’a broken line : L ’  . .  Y 

C .  r 

- L .  .’ * .  v : p :  K .  2 f i 

A 
$ 

In thjs expression Z1 indicates the  component index of V. . The  structure  notation for. V. 
then’iefers to its component ; the  structure  notation of z1 refers to z1 . 

A typical application is the following : A function is represented by  a  list, in which every variable‘ 
refers to  a  function value. This results in a list of pairs ( pair List ). If the variables are represented 
by the integers 0 to n-1, then they correspond to the indices of the  list and then  only  the , 

f 

list of the  function values is needed for the representation of the  function values.  If the  structure 
on this list is specified by nxu and if V1 is the variable, then  the corresponding function 1 
value isrepresented  by : t 

f 

-.. 

1 . .  

V 7: K 
S U 1.n 

( see-qlso : chess Problems PA.62 ) I 
Not always does the Overall index have to be varied. If, as described in the example above, the 1 
fünction values are composite and only the cornponent 1 of it is.wanted,  then it is possible to 
define and intermediate value Zo first as follows : 

t 

t 

. . .  -, . _. . . . . . . . . . . . . . . . . . . . . . . . .  -- ......... ... I 

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA



- 60 - 

The  two expressions can  now be combined as follows : 
' ,  

V.l =) R ! t  t 
V T1 0 ! E  + 

K 
S 7 1.n 7 

.. 4. .  

' &  
, :i 7 

i 

; p  
C/- 

The  term V. 1 is tl?#Öught to be inserted into the Position of the component  index of V. The / r  
dot  identifies.qe diffcrent levels  of the  components. i . .  h I ?  

In the list 'V  the elemint w i t h a e  index  V sllall  be s,ubstituted by the dement V : 

V ,  

1 0 

. .. - .'. . I 

0 1 2 L 

R ("V , V ,   V )  =$ R ' V  t 
0 .'1 2 0 

S nXo C .  . .  t . .  * ' \\$ 

V * Z '  V 2 ' 2 ' -  V Z * R  
V 0 0 2  0 0 

OJl K 
S nXo nXo U U In nXo nXa 

i 
i 
C: 

I The  computation of Ro is performed via  an intermediate value 2, , which  varies during the 
Course of  the  computation ( ref. rules for the Symbol =) ). Note that only the component V1 of 
Zo varies ( for an example, see  chess - Problems PA.136 ) . 

f 
The Variation of  the  index  can also  be performed several  times in successipn ( see  chess - Problems 
PA.202) . F 

The  demonstrated Variation of the component  index  may also be performed  with the variable - 
index. The  two cases  are  analogical. The Variation  of the  structure - index represents the case 
already discussed in section 4) e, f, that the structure - symbols  depend On the real  Variations. 
This may refer to the basic method according to section 4) f ( See arithmetic  programs  P9.72 ) . 

d) Data of Variable  Size 

Data  of variable  size  are important  for the list - calculus ( see chapter 2, general  programs ) . 
If list extract R, has to be produced  from the list V, which contains only those  components 
of V, , which  with a certain criterion comply,  then  the size of the list Ro is a  function  of V. 
itself and not only of the size of V, ( in the latter case you have a quasi  fured  program ). 

In such programs the structures are functions of the real input - variables and have to be determined 
for  each  computation ( contrary to the quasi fixed programs,  where this is determined  independently 
of the real  variables and  only as a  function of their structure ). 

It is not necessary,  however, that the size of  a list is  always specified by the structure  notation nXa. 
Other size specifications are  also  possible. Two  of these are of  Special importance : 

a) The specification of lists by additional data. A Part list such as V  can be produced  from  a  long list I 

I 

ticking additional data. In this case the ticked components  only &m the Part list. 
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1 

4 

, 
4 I I '  > 
i 

ß) The Setting  of " begin *' - and"'  end " - symbols  provides a  means  of identifying the 
I . .  

length of  the list. These symbols may be blank positions. It has to be noted  that in machine 1 5  t + 

coding a Special  Symbol  has to be  assigned to  a blank Position. In  typewriters,a  Special  key 1 

is usually  assigned to blanks. ' , r :  
'* i 

C . 4. . 

$ ) I ,  
*Different programs solving the Same Problem  rnay  be represented differently depending on C 

the kind  pf representation. By  using vadous Provisions such as repetitjve programs and the k 

p function ( reference to  it will be made later ) it is possible to avoid the differences and I 

es3entiaUy to standardize  the programs. 
j 

. . ., I : '  

Y 

.'. . t 
. I  

Compuiation of  Prggrams 
.- 

That the real  variables  of a program  are of different levels, so that  the Variation of  the  program 
can be separately established as a hnction of the  programmv~iables o q a h a s  already  been t &- 
discussed. {$M% (5.2 P ' 4 CL , Pb$& SY) %L-. 

In general  however, 'this pfocedure  can alsa depend on real  variables. 

If  uo , ul:..un  are the prbgram  variables of a quasi fvted program,  and  represent variable 
Operation - symbols or structuresymbols  and others, then the expression for  the  computation 6 

of a quasi fmed program .is the foIlowing : C 

. .  . - i  
t 
C 

L .  . ,"% ; 
d 

' C  

F ( u0, U l y  u2! * P i 
P is composed of a series  of  program equations in which the real results are defined as functions 
of the real  variables V, , V1 ... . The whole  program then is represented as follows : 

F ( U, U, U ... )' * P 1 
0 1 2  

P f 
-This states  that  the compiled program  is computed  after  the  computation of the program  is com- 

pleted. Here also, only parts of P or  only program - variables  may be defined by the  expression i 
F ( 1 -  

The program for 0 takes the fouowing  form ( See programs for arithmetic Operations 
- 0  

Marginal data  Extract I 
0 t R( V ) * R  

s 1Jn 

Marginal data  extract with program - variables 

R( n , v )  * (  myR 1 
V 

l A  1Jn' S 
0 0 
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Program : ! ;  
, f f  

F 

F ( n ) * m  .. 4.. . 
( R (  m,n 1) (V)* R . 4  i 

> #  
First  m is evaluated  as a  function of  n, then  may be  evaluated  by a quasi fixed 
program. - ;r 

6 )  Repetitive Progrks' .. 

? 
' ?  

Repetitive Programs  are  programs  which  are executed several  times in succession, wherein the number ' 

of repetitions inspecial cases may also be zero  or  one only. @end;dy, a program equation 0: a 

exists wherein yoiu prokeed to the next  equation after execution of the current one.  Conse - b 

quently, the sequence ~f the equations  on  paper  must  correspond to  the  programmed sequencedf 
their Solution. 

t 

The rule for repetitive progrks  is that the start of the program  is retur6d  to until  the Signal ! / r m v  
" Fin " terminates the repetitions. 

This is only  memingful, if the instructions of the repetitive program are subject to  vkiations 

process a list for the computations. Normaliy, this is accomplished  by  changing a  component - index ' 
i to i+l. Repetitive programs, therefore, generally operate  with  control variables i, e , which 
control the Variations  of the repretitive executions of a program. They are called " Variation - f 
values " of a repretitive program. 

The repetitive program must  contain  an instruction for the  termination of the program execution f 

as weias the  instruction  for the Variations. ThL may , have to happen  either  after  a  predetermined f 1 
number of repetitions is completed  or as  soon as a set of  values  is worked Off. To terminate  the 
symbol Fin, but of the  second degree Fin2 , has to be  used; This is  necessary  since the  entire 
computation consists of a sequence of equal repetitions of the program. The single symbol 
Fin  within  a repetitive program  would  only  cause the  termination of the Variation currently  running 
without  returning to the  start  of  the repetitive  program. 

Such a W- program then takes the following  general form : 

W 

series  of them is;kolved,  as soon as the listed instructions are executed.  The  non - formulated rule V t  

* .  I . .  . .1\ i 

I 
' "  

which result form the repetitive computations themselves.  Very often these Variations  serve to i 

e 

Repetitive programs  are put in brackets and  marked  by a pre-set symbol W. I 
t [F: L ]  

F represents a  propositional  expression which  is a function of the vhation - values and  of  the 
variables  of the program as weil . 
P is the real repetitive program. It contains the program including the instruction for  its Variation. 
If " F " is positive then  P is executed , if " F *' is negative then  the whole  process of repeti - 
tions is terminated.  For simplification, the expression F * Fin2 is Ieft out and it is understood 
that it must always be regarded as a  complement to a W - program. A W- program then  takes  the ' 

i 
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form : 
W[ F * P ]  

This can also be composed of  several expresiions : 

.- 

In  such cases , the enq'iymbol must be supplemented  by an  expression : . . 4 

.. 4.. ~ 

' 1  

.* E 
F 

i 

which indicates, that the process  is terminated if the condition  for  its  execution is positive for $ 
none of the program  Parts.  Besides this general -,W - instruction, some other Special ones are 
introduced for frequently recurring  cases. 

First  a program is investigated  in  which a control variable i or E rum through a series of numbed 
Wo ( n 1 denotes n - repetitions of a numbers. 
For instance . .  Raising - - .  to-a . .  power : 

. .  

f 

. -  
r 

V1 
V0 * R, 

R( V,V) * R  
V 
A 

0 1  0 

8 9  8 

. ~ . . 

P 
f 6 

: A8 = realnumber 

' A9 = POS. integer number 
I 

'- - . -  

. .  --- - 

1 * Z  (.Wo (Y [ f X : * f ] i  Z * R  
- 

0 0 0  I 
If = o then  the W - program is not executed.  The result Ro is 1. 

If V = 1 then the program  is executed once.  The result Ro is V, etc. 
1 0 

W1 ( n ) . This instruction is used, if the program  varies  in  value form o to n-1, e.g. if an 
Operation  has to be performed . with  each  component of a list. 
-- 

.- - - . . - -- -. - - . . . - -. . , . . - .  - -..-.--- ... . - . . .. . .. . .. . . - -  .. -_ . . . - .. __ _ _ _  . .- ..~ 
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i ' .  4 t 
Example : General  negation ( See chapter 2 ) . ' 

Negation  of all clements in a series of Y - N - Values 

R( V ) * R  
V 

1 s  ' 1 .n S 
0 0 

. .  K .'. . 
S 0 0  

'+ . 

r ! ,  

. - . . . . . . . . . .  -. . . .  . . .  ....... . . . . . . . .  

W2 ( n ) corresponds to W 1  ( n ) but with the difference that the control variable i runs  from 
n-1 to 0 .  F 
This W-program is important  for instance for Operation with algebraic expressions  which are re - t 
presented by a wies  of  Symbols.  With these reverse  progr&s execution  frequently has tobe applied. 

The limits of  the  control variables in W1 and W2 are selcted in such  a way that the number  of 
elements  of  composed  data ( list ) can be substituted for '' n " . Then  the Variation runs from 0 
to n-1 . 

t t  
t 

I 
If, for instance general negation  has to be evaluated using data of  variable structure , then the 
formula  may be written as follows : 

W3 ( n,m ). to W5 ( n,m ) are programs  in  which thc Variation rum from n inclusive to m 
exclusive  and  always  begins with n . The limits are m 2 n  for W3, m 4 n for W4. W 5  is 
applicable in both cases. I 

W-programs can also be  used to from  a seris of  vdues.  The series of the  number 0 to n-1 is the 
result of the following  program : 

L .  

C 
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0 * R  W l ( n )  
V 

0 K 
0 

W-programs ca i  be multiply nested. The correlation of the Symbols W and the program - 1. 
variables.has.t$dn to be indicated  by indices. For instance P3.3 : the examination of a list for 
recurring  eIernens.- ; .. 1 :* 

I {  
Each element  has to be compared  with every other  element. 

\ .  V 

I \. 

. R( V )  = + R  "I s . 0 0 , i i  t 
n 0 . .  C 

+ * k  ', C '  B 
f . .  I 

' n 
* -- ; 

V 0  R 

~ 0 . . P  

w l ( n )  [ ( i + l , n ) [ : J ~  * ;I: A :1; d 

K 
... 

S U U 0 '  0 I 
Z * R  U 

0 0  
F 

The  intermediate value Zo is used for  the  current  development of the  conjunction  of all Single 
conditions. r 

f 

The first W-program takes the form i 

w l ( n  j 
0 

The  index 1 on the main  line  specifies the kind of W-program. The  index 0 On the V-line 
refers to the  attached  control variable written i . The first W-program runs form 0 to n-1; 
consequently  through all components  of  V . 

The  second W-program  is of  the W2 kind  with i indices attached, but  it rum from i + 1 to n -1. 
From this follows, that the lower limit is a  function of the variable i of the first W-program. 
In each run, one  component of V is compared  with all other components following it, thus dupli- 
cate Operations and  comparisons of elements  with themselves  are  avoided. 

0 I 
0 

1 .- 3 

0 

0 

Taking such  numberings of  W-programs and their corresponding indices into occount  the general 
instryction for W1 reads as follows : 

i 
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/ 

Corresponding notations can be established with other W-programs. 

W6 ( n,m 1 An especially advantageous form of a W-program  is the follo'&ng: 
t 

The first clement is to be selected out  of  a list Zo . Then Zo is to be  newly formed &er " , f > 
selected element has been left  out. Thus the list Zo is h ing  limited through other Operations or '! i 

supplemented or newly established entirely. ' 

We write : 

j p  

The W-program consists of three Parts: 

a) Computation  of Z and  its removal form Z . 
b) Program to be computed with Z . 
C) New formation of the list Z as a  function of the  former Z and  other variables. 

The program is repeated until  the  list Z is used up ( for example see chapter 2, P3.9 ) . 

1 0 

1 

0 0 

0 

8 
-.. 

7) Pro~rams for  the Predicate Calculus F 
In mathematical logic certain'operation Symbols play an important role : The " All *' - and 
" Existence " Operators , as well  as the Operators " that one which " , " those which " , " the 
next " . 
Now will be demonstrated, how these Operators can be represented in the Plankalkuel and what 
importance  they deserve. 

a) The " All " - and '' Existence - Operators " 

The expression ( X ) R ( X ) specifies that the predicate R is valid for all X. '' All X " I 
identifies the number of elements, the insertion of which into the predicate R is meaning- 
ful. This definition can also be adapted to the Plankalkuel. The number  of values to be subs - t 
tituted for X is then  the  number of data characterized by the  structure  or mode Symbols of X: 

In  the expression 

all data with the structure 1.n can be inserted for X. I 

i 
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In the expression : 

( J 0  R ( x )  

A YI 9.10 

only  the positive integer decimal numbers can be inserted for X ( s e e x )  . /1&8 a /  - C  

Generdy,*&e;€ojlowing rule  has to  be assumed : in the case of  a restriction - formula B 1 :  

( see(i6 ) , only the values aefined by this formula can  be inserted . This restriction is already 
cotained in the term A9.10 ( see 148). 

To establish the " All " Operator , a first expresdon is required to specify that X belongs to a 
certain data -. type' : L 

. .. 
' 

P 

A '(.X ) (]L respectively A ( X ) = U 

L ( a! ) , then L ( U ) respectively . I 
If U = So then  the list L ( U ) consists of values " - " and " + " .  If U = 1.n the 
series  of integer binary numbers from 0 to n-1 results. The program for the formation  of 
th is  list has  already been established ( see  Page 6 5 )  . In a similar  way it is  possible to establish . 
the program for  the  evaluation of a  randomly composed structure U for the list L ( U ) . . 
A restriction - formula  can be  applied to achievc a  corresponding restriction of the list. 

' *  

f 

f 

In principle, it is  possible to establish a general  program for the formation  of  the list L ( U ) 
for any  mode  of  data . 

This will not be realized presently, for two reaons : 

Q ) This program  would be a  function of the structure-  notation of a  structure  notation, and i l :  

e 
i ' t  

thus  a variable  of third degree, so to speak ( see 61 ) . This would render the Problem 
very complicated. 

0 ) Generally, it is not necessary to develop a list of all possible  cases. 

If the list L ( ar is exceptiondy required for a certain ar , then  the Special  program for the 
development  of L ( ar ) has to be established. Thus , in general, the expression 

1 

a n  be represented  by the program : 
.- - -  . -. - . - - -  .... - - ^ ~ 

~ -_-___.__ 

L , ( A (  x ) ) * Z  W1 ( N (  2)) + *  2 
V 

0 0  0 U 0x0 S 
K 

0 1 0  1 0 

. .  - ~ . .  - . -  . -  I 
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? 

# :  

The Same cosiderations are  valid for  the “Existence” Operator . .  
, ‘ 9. 

( E x ) R o ( x ) * R  

P .  at least one element with .the  property Rn exists.  The conesponding program is,the .. , 
following: , t t  

6 ;  

‘! i 

W l ( N (  Z))  

Rn(:) A Z * Z ] l Z * R  

f b  
0 1 1 1 0  r 

49 

We formulate these sentences differently : 
t 

. .  V 

“For all X is true ’:, If X., is an element of V, then it  is also of  the  property Ro”, or L ’  B 
2 

“An X exists fo: whicb,ktrue : It is an element of  the  list V. and it is of the property V,”; 
Symbolic notation is now,iequired  to express that X is  an element of  the list Vo. In relation j 
to the theory  of sets it is stated : 

X E  V ! - *  

f 
which is read : “X is an element of V”. 

0 

The W b 0 1  ‘F’ bin& expressions more closely together than any other  symbol  dies, 
The corresponding program reads : 

r 

e 
R (  V ,  V )  * R  R = V E V  3) 

0 1  0 0 0 1  
S G‘’ n& o 

- 4 Z  Wl(n) 
V 
K 

0 

S 0 0 0  I 
The expression for  the Operators  can  now be expressed as follows : 

( x ) ( x € V s  Ro(X))  
0 

( E x ) ( x E  V A R O ( x ) )  
0 .  

, l  

In these expressions it is no longer necessary to extend  the Variation  over the whole  range of 
fhe  structure.  For  the “ All ” Operator the following is true : 

1 .  

i 
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i ' .  . 3. ; C  k Either X is not an element of V , in  which  case the implication is true in any case 

( a + b  eq ä v  b). ' 

These cases  need therefore not be investigated. ' 

0 ! I  
-. . 4 . .  \ 

1 :  
' t  i 

Or X is an element of V ,  then RO ( X ) must be true . 
0 

Fot the " Existence " Operator the following is true : i 
Either X is not an element of V then the expression within brackets is  false in any case. 

:. 

Or X i .  kek,ment of V , then Rn ( X ) must be true. 1 3  

Therefoie, it is suffi'cient in &y case to confine  the 'Variation to the elements of V. I \  

0 I 
* -. 0 

0 i 

In consequence , the resulting expression reads : 
.T 

. ( x ) ( x E V +  R o ( x ) )  4 R 
P. 0 

In mathematical logic the following Statement exists : 

( x ) F ( x )  + ( E x ) F ( x )  

This is true, because empty sets are excluded. In the PK representation developed above, the 
set of elements X is restricted to the list V , and consequently the logic Statement is not 
true in all cases : 0 

( x ) ( x E V + R o (   x ) ) + ( E x ) ( , x E V  A RU(X)) 
0 0 _.- 

Reason : the  set of elements of V  may be empty.  The corresponding Statement of the PK 
reads : 0 

( x ) ( x E V +   R o ( x ) )  + ( E x ) ( x E   V + R o ( x  )) 
0 0 . .  

These two Statements are  generally true . 
For the expression : 

t *  1 
t t 

f 
0 

F .  

( E x ) ( x E   V A  RO(x))* R 
0 0 
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the  corresponding program  reads : 

W l ( N (  V )  RO ( V )  V Z * Z  Z * R R ,  
0 [ . o  

K i 

b ) The  Operator. '' Those which " 

In mathematieal logic the expression . .  . .  , . \. 
Ro ( X ) .. 

specifies the Set of  elements for which the predicate RO is true . 

To arrive at  a general  formula, the Variation of X .  has to be extended over the whole'range 
of its  structure-. . 
We then  obtain the expression 

C' 

and the  cprresponding  progtam : 

I. O * E  L( A ( x ) )  * Z 
V .  

0 0x0 S 
0 ,  

V 
K 
S 0x0 U 

Froln the list L ( A ( X )) , which contains all Variations of the structure U ,  those  of  the 
property R are extracted. The value E serves for  the  current  numbering  of  the  elements 
of the result. 

The Problems occuring in practice are mostly  of the following type : 

" Form  a list of those  elements of the list V , wllich are of  the  property Rn "' . 
Correspondingly, this can be written : 

0 

; ( X €  V A  R O ( x ) )  
0 

Now we can say : If X is not an  element of ,V , then the expression within brackets is  false 

in any case. If X is an element of V , then RO ( X ) must be true. Again, only the elements 
of V have to be investigated. 0 

0 

But  then,  the following difference exists : if  several elements in the list V are equal to each 
other,  then  they have to be listed, but  only once. It is therefore sufficienPto investigate all 
elements of the list V in regard to  the property Ro , but elements  already  extracted in addition. 

0 

C 
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This is accomplished through a value Z which represents 'the extraction list. In the beginning 
the list Z equals  the  empty Set  which'is denoted by the Symbol " 8 *' . 
For  the  expression : 

0 .. 4.. . 
. ,  

' 4  

P ( x E V  A R o ( x ) )  =$ R 
0 0 

the  corresponding program reads : 

V 
K 
S 

V 
S 

.. 

The  expression : 

2 ( X E V )  
0 

0 

then represents the list of all extracted  elements  of V , in which each  element is listed o d y  
once. 0 f 

The  expression : e 
V = $ ( x E  V) t z 
0 0 

therefore, specifies, that  V does not contain  multiple  elements. Very often  a list of all elements - 
of  the list V of the prop&ty R O  is required, in  which the elements are listed as frequently as 
they are exgacted. , 

( For example : out of the list of  all instructions in  a machine-ready  program only the 
instructions for Operations  have to be extracted. They  represent the extract list for  the  control 
of the arithmetic unit. ) . 

Now the Symbol  is introduced  and  the following  expression formed : 

I 

k ( x €  V A  R O ( x ) ) *  R 
0 0 

. .  

I 
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the  corresponding program reads : 

O * E  1 w l ( N ( ; ) )  [ Ra(;) '[;*!I E + 1 '€ ] ]  . . 4.. . ' t  

K 

It has to be mentioned that in both cases ( 2 , ft ) , the sequence  of the memben of  the 
extracted  list'corresponds  to  that of the input-list V, . 

In the PK the Operators have;' therefore , a  sornewhat !different meaning as compared to 
mathematical logic,  where they  only define sets. In the PK they are expressions  for  a &es 
of values w i a  a  determined  sequence of  these elements. 

It is  generalIy true &at : 

* \  \ - 
% ' > .  

. .  . 

A 

. a  ' 
. .  

C 

x ( x E f  V I'& = V 
- ( Y * ? ,  0 

' :\ 

The  meaning of 2 and 2' is demonstrated by  an example : Given is a list V. consisting of 
a series of numbers. 

Ger ( X ) means " X is  an  even number " . 
V o = ( 0 , 3 , 5 , 4 , 3 , 3 , 6 , 1 2 , 6 , 4 )  

Then it is true,  that 

f;. ( X E V ) = ( 0 ,3 ,5 ,4 ,6 ,  12 ) 

X^ ( X E V A Ger (X)) = (0 ,4 ,6 ,  12) 

0 

0 
. . . . . . . 

( X E V A Ger (X)) = ( 0 , 4 , 6 ,  12, 6 ,4 )  
. .. . 

C )The  Operator " That One  which " 

In  mathematical logic the expression 

X' Ro ( X )  

states, " that element for which the predicate Ro is true " , 

It is a condition for the application of this Operator , that one and precisely that particular 
element  of the specified property  does exist. By  Variation  over the whole  range  of the 
structure of X the following  program is produced : 

._ . 

f 

I 

P 
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I 
r i  

? 

too,  the  expressions  mostly  take the following form : 

As soon as an  element of the property Ro appears, this results  in R and  the  end  symbol  for . 
the whole  process terminates  it.  The  end - symbol in a W - program is Fin 2 if the whole 
repititive process is to be terminated. But,  since  tlie end  symbol  stands to the right  of the symbolj i; 

. 3 ' in a closed program, it must be  increased to the third degree ( Fin3 ). For thjs opegator $ 

, 1 :  
~! C 

, ' I 

f t 
r : ) t  

, 1  f r  
( 
; 

X'( X E V A Ro(x))*R 
0 0 

the corresponding program  reads : 
* _  . X. - 

V 
K 

d )  The Operator;:' The Next One " 

The Operator . .  - ; i c X R P ( X )  . i\. 

"11 
.. 0 

was introduced  into logic CyHilbert, ( Hilbert, Bernays, " Grundlagen der Math.  1;  Band " t '  
page 395 ). It specifies: " The  next  element  of  the  property Ra; if this does not exist then . * 
the expression  equals  zero " . l! 

We will take over this Operator in somewhat different form.  In  the PK, the Problem of 
systematically inkstigating  a Set of  values fs mostly  encountered. In this case, the list is I 
investigated for  elements  with the property Ro , until it is exhausted. If there is no such 8 

e1ement;then it is meaningless to set X = o since this would  lead to errors. An example out 
of  the chess - programs  Shows this : f 

There is the " field - occupation *' ( sae 216 ). First , out of V, the list V1 containing 
all Squares occupied by white pieces is extracted. Then  from theses Squares,  i.e. from  the list 
V1 all those Squares are extracted which are under  attack by  black : 

- *  

C 
-- - r t  

Wanted, therefore, is the list : 
- -  . 

2 ( X E V A  Agr - ( X ) )  

1 
I 

However, immediately  after the extraction of each  of  the respective  Squares, they  must serve 
as input - values for  another program , namely one investigating the freedom  of movement. 
This is performed in that  the  next element  of the property Agr  is always extracted  from the 
list V, . Then the program P is executed with this eiement. For the first element we can 
establish : 

p x  ( X E  V A A ~  (X))  ' * Z  
0 0 I 
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t 

i 

' i  

? 

N 

. .  

If no such  element exists, then  a Substitution of X by zero would produce  a false result. For 
tllis would mean, that the squarc ( 0,O ) ( the Square al ) is occupied by a  white piece attacked I 
by  black. Differently from Hilbert we therefore define : 

, I  
*. 4 . .  

c t x R o ( x )  ' I  

as the next  element  of the property Ro . If this does not exist, the program is terminated  by C 

the end Symbol. If in a repitive  program the values xRo (X) are formed successively, then the 
values already  extracted are discarded.  In Ws way it is  possible to investigate a list systematically. 
We ttieo obGin an expression  taking  the form : . .  . I '  

i 

I ;r , .  

This expression can be substituted  by  the following  program : 4, I 
s 
P 

C '  r 
X 

. .  

V 
K -  
S 

-1 W 
'V 
K 
S 

. .  

V 
K 
S 

0 
i. 1 

U U 0 
L 

In th is  program an auxilitary list Z is first produced  from the list V by supplementing  each 

element by a Y-N-Value,  which indicates whether this element  has  already  been investigated 
for  a transfer to the list Z . Consequently, these supplementary  data are all negative at  the i 
start of the Operation. 

The real  program then consists of  a main W - program  and a  subordinated W-program-: The 
first one serves the repitive formation of Z and is repeated as long as the following conditions 
are fulfded : 

1 0 

0 

0 

a) In the list Z1 elements  must exist that have not  yet been  investigated. . 

P) If repetitions other than  the first are under way, then the preceding  evaluation  must have I 

resulted in a Z . Otherwise the repetition of the Same investigation is meaningless. This is 
0 
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specified  by the auxiliary value Z2 which h& therefore to be positive to Start with. , ' 3. 

The investigation  of the ncx: element of  Zo is performed by the  subordinated W - program. ! E t 
In the ]ist z those  elements are  investigated  which  have not  yet been specified 

1 
I. . 4 . .  

' I  
' f f  

i 

; r  
K i. 1 d ?  

As soon as the prcdicate Ra becomes true for such an 'element this is made  equal to Zo and 
specif'ied in-the list Z1 : V . .  \ I ?  

%'. . , 
'+ =2 z '* 

1 k 

, K  i.1 ' 

;r t i  
Further,  Z2. becomes  positive and  with Z, the program P ( Z ) is computed.  Then  the 
subordinated W - program  is terminated ( Fin 3 ) . 

\ t 
Cenerally , Ra as &Ai as. '2, are not influenced by P ( Zo ). This implies that the list Z1 
remains the Same in all repetitions, with the exception  of the marking of the already  extracted : 6 
elements. Thus the criterion for  the  extraction of the  elements also  remains the Same for all 
Variations. h 

L 

-. t 
. . '.* 

. C  

X 

It is then not necessary to  extend the investigation for every Z over the entire range of  the 1 
list Z in each repetition. Only the elements not yet  investigagd have to be considered. This 

1 
corresponds to a  systematic investigation of Z and of V respetively. 

1 0 

First the following  program can be established : f 
. _  . 

W l ( N ( V ) )  R a ( V )  

[ p [ ;*: ""'I] $1 
0 

p4.49,  chapter  2),pagel29gives an examp1e.h which this formula  must be applied, since Ro i~ 
currently varying. 
There Ro has  the  form : 

t 
x = z v x = z , ,  

1 
1 I 

Z1 has.a different value in each repetition. In Order to stress the  fact,  the  symbol p was 
provided with  a dash 

e ) The Operator h (X 1 I 
The following  is stated : 
the Operator h (X) corresponds to  the Operator p ( X ) with the only difference that with it , 
the investigation of V, Starts with'the last expression : I 
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h x ( x E   V A R O ( X ) ) = *  z 
0 0 I 

- . 4.. .. f 
corresponds  the  progrim: ' 1 :  .$ i 

N (V) * E 

0 

W 
'. ' k. 

I : * O  ;+ -* z 
1 

Corresponding  considerations  can be  applied to combinations  of several X - and 1- Operators in f L 
one W-program.  More about  that in the  chapter "machine-ready programs ". 5 )  R 

- *  

f) p -Operator On the right side of the synlbol * 

t 

In 'rhe expression: 

V 

the  equation  within  brackets specifies, "F results in the  next  element of the result Ro ", which 
consists of  a list of several  successively evaluated  elemects. 1 
The following expression Substitutes the program : 

K 

g)  Designation of Variables and  Intennediate Values I 
In the  expressions dealt with in  paragraphs a) to f), X represents a  bounded variable.  If  several 
of such bounded variables appear in one expression, then  they have to be  designated differently. If 1 
there are only  two,  then  the Symbols X and  y  can  represent  them advantageously. If there are 
more  than  two,  then  it is better  to use the Symbols X, X, X. 

0 1 . 2  

Similarily, the intermediate values Zo, Z1 ... have to be  distinguished by sub-indices, or by  a 
Change of  the designations in the case of interlinking of Operators. This also applies to  the variables 
of the program within which the Operator  appears. For  more  about  that see chapter " mache-ready 
programs ". 5 )  

I 
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h) Implicit and Explicit Expressions with  Operators of the Predicate - C ~ C U ~ U S  

The discussed expressions  take one of the following foms: 

(X) Ro (X) * R 
0 

(X) ( X E .V + Rn (X)) * R 
0 0 

(Ex) Rn (X) * R 
. .  . 0 

' @ x ) ( x € V ~ R o ( x ) ) * R  
0. 0 

* .  '* 

4'. . 

A 8 ( X E V A R ~ ( X ) ) * R  
0 0 

X' Rn (X) =+ R 
0 

X' ( x E V A R O ( X ) ) * R  
0 0 

~ x ( x E V A R ~ ( X ) ) *  Z 
0 0 I 's1 
0 0 I , 

X x ( x € V ~ R n ( x ) ) *  Z 

t 

At fust glance the values R  and Z seem to be represented explicitly in  these expressions, because 

they are located on the right side  of the symbol *. 
0 0 

The  programs to be substituted for .these expressions, indeed, in any case  provide a  systematic I 
computing  method. But often this systematic  method is redundant  and  has  then to be substituted 
by a more  effectivw onc.. 

The implicit expression: 

X t a x t b = o  2 

for instance, can be transformed into the following explicit form: 

X P 2  (X t a x t b = o ) - R  
0 

I .  
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U '  j 

In this case, the systematic process  would request the systematic Variation of X over all possible .> ' i  ; 
values, in Order to investigate, if the Proposition  within the brackets is fulfilled. Whereas the , t  

well-known explicit Solution is the following : ! E  " t 5 
- a/2 + a2/4 - b * R 

0 '  
0 

: - a/2 - a2/4 - b * R 
0 

.. 
In statistics , however, expressions in the gcneral form given  above often  already  represent  the t r  
explicit Solution  because a better  method does not exist. C 't 
The  systematjt meeod corresponds to the sorting procedure  with  punched cards. The  data on 1 
the cards correspond to the. elements  of the property R 0 , several runs are necessary if the : 
criterion is complicated. Aq interesting example is the following I .' I . .  t . .  * ' n 

Uhdss-prograhs P A.32. 
. I  i 

- List of elemknts  between V and V B 
0 1 

R A29 ( V, V, V ) specifies : V is situated between V and V . 
0 1 2  0 1 2 

E 
-.. 

Then can  be stated : 

i? [ R n A 2 9 ( x ,  V, V )  ] * R  
0 1  0 F 

In this case, the  systematic  procedure would consistof  an investigation  of  all 64 Squares of  the F 
chess-field to find out if the criterion RA29 ( X, V, Y ) is fulfded  for them  or not. The f 

volume of this computation is still tolerable, but  another  method is much  more efficient. 
Starting with V, in the direction of the  element V1 the  elements are generated.  Then we obtain 
the list of the wanted  elements in a direct uobroken sequence. In a  corresponding way in PA34 
those  elements are generated which  are in knight-relation to  the member V, . 

0 
t 

This method of constructing  the  wanted values  will  be  called " generating  method " in contrast 
to the " systematic  method " . The rules for the generating  method have to be established 

I 
specially in each case. 

it is not possible to decide  easily whether an expression  corresponding to  that on T>(" implicit or explicit. There are  programs and various expressions  equivalent  in them- 
selves  available  which reach the target in different ways at different expense. ' 

I 

. . . - .  -.. - .  

I 

t 
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8) Miscellaneous 

a)  The  Opcrators AR,  VR, ZR, nR 
. For the expressions : 

V h V .... A V .... A V * R 
0.0 0.1 0.i 0.n-1 0 

0 0 0 

.V L V  .... v V  .... V V  * R 
0.n-1 0 

0 .' 0 ..- 0 0 
. -. 

the following programs  can  be established in  accordance with the d e s  discussed hitherto : 
C 

B 
..l 

, .  
S 

t 
0 

V f 

C 
S 0 

S 

A 

For the foregoing programs  the following abbreviated notation can  be introduced : I 
W1 (n) ( V * A R) W1 (n) (V * V R) 

0.i 0 0.i 0 

W1 (n) ( V * I: R) W1 (n) (V * II R) 
0.i 0 0.i 0 

The  Symbols A , V , 2  , II have to be pronounced : 

conjunction  element  of .... 
disjunction element of ..... 
addend element of .... 
factor of .... 

I 
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r i  

4 

" )  
j 

, I  

1 

It is advantagems  to employ the foregoing  Symbols  if elements in a series of Operations are , T 9, 

W-program. Rathcr  expressions of the following form are also possible: f 
'i 

, 4 :  

. .  
generated successively. In this case it is not necessary for all of  them to appear in a closed .. 3 . f, 51 

'. 4 . .  

F, =* A R o  .f i 

F1 =$ A R o  

._ . .. 

F, =$ A Ro E 
But in a  progiam  only one  of the  four Operators' A , V , C , ll may be applied to the same valu L 
( See chapter 4, page .): P L 

C '  r 
z 

b) Representation of  Powers ',:% 

* *_ i 
To Position all variables OQ the  main line the values representing powers can also be positioned 
on  the main  line. The original Position of the v.alues can then be indicated by a  broken line 
analogical to  the representation of composed indices ( See page 5'7) . - C  t ' r c f -  

i. 

V 
V 1  = V I V  
0 0 . 1  

By this method  any  randomly  complicated expressions  can  be represented as powers : 
7 

V L v  
V 1  2 r 
K 

9 A 8  
1.3 0 

C) Emptv-List  and Variable  List with onlv One Element 

All data  composed of a series  of elements of the same structure can be defined as lists 
( S = mXo , See chapter 2, 98 ) . If the number of elements of the list is variable, then  the 
Special  case  can occur, that this number becomes Zero. Such  a list is  generally specified by the I . 

The expression : 
symbol p . 

0 - z  
0 

0x0 

denotes, that the list Z, represents an  intermediate value  which  is empty  at  the Start. This is 
the case.if for instance the result of a program is a list, the elements  of which  are generated 
successively. At t!!e beginning this growing list is empty. It may also happen,  that  such  a list 
has only one  element at the beginning. We then  state : 

I 
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V * ‘ 2  
V 0  

oxa s o  
0 

‘. 4 . .  

ThiS specifies that V is the o d y  element of the list Z . In this exceptional casc, vaiableimf 

different structure may appear on the two sides of the symbol * . This is permitted only in 
this case. ’ 

0 0 

d) Stalemknt S ’bbul  
. ’G. 

If an expression represents anidentity, i.e. sgenerally true proposition , then  the Statement 
symbol  is positioned before thc expression. 

.* I-F 
. .  . . .  . .  t 

C .  

I 
? 

C 
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Chapter 2 

I) Operations'with Data of thc Structure SO .'. . \. 
1I)Operations with Data'of  the  Strccture S1.n 

1) Programs with m e  Input Variable of the  Stnlcture S1.n 
. .  P1.0 to P1.9 

83 

83 t 
L 

2) Programs with.one I n p q  Variable S1.n and a result S1.n 
* .  I : . .. \  P1.16 to P1.27 

3) Various Programs with a Variable S1.n 
' *_ 

P1.32 ' t o  P1.41 

4) Propositions on two Data of the Structurr! S1.n 
P1.64 to €9.75 

5 )  Operations with two Data of the Structure S1.n 
P1.96 to P1.129 92 

I 
I *  

6) Relations between 3 Data of the  Structure S1.n 

111) Programs with Pairs of D a t a x  

1) General Programs  P2.1 to P2.9 

2) Relations between Pairs of the  Structure 2xSl.q interpreted as Areas 
characterizes by Binary Numbers. P2.16 to P2.34 
a)  Propositions on not ordered Pairs 

P2.16 to P2.24 
. .  

b) Propositions on ordered Pairs 
P2.32 to P2.34 

IV) Calculus of Lists S3 = 0x0 

1) Quasifuted Programs 

a) Propositions on Lists P3.0 ' t o  P3.9 
b) Operations with a List whch produces another List 

P3.10 to P3.16 

93 

93 

93 

95 

95 

96 

97 

97 

i 

97 

100 

C) Programs for sorting ect. . 

B.24  to 'P3.27 102 I 
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I , 

j 

d)  Piograms for  Counting 
P3.29 to P3.30 

e) Propositions  on  two Lists 
P3.32 to P3.36 

f) Proposition  on  two Lists concerning  a  Relation  R 
P3.40 to P3.44 

g) Development of a new  List  from two given  Lists 
P3.48 to P3.52 

. Lz, Qz, Nr , .  ~. 

2) Free Calculus o<&s '. *- P3.64 to P3.71 

V)Proarams with  Lists  of  Pairs 

( Calculus of  Relatfons ) 

1) General 

2) Propositions  on List3 & Pairs"? ._ 

I .  

. .  
\ 

* .  ! 

a) Front  and Back Elements of Same Structure 
. P4.1 to P4.10 

', b) Front and Back Elements of Different  Structure 

3) Programs to Order Lists  of  Pairs 
Ord 2  to 6 P4.24 to P4.28 

4) Field ( Front Area ) and ( Back  Area ) of a  Relation 
P4.32 to P4.34 

5 )  Programs on  Structures of Relations . 

P4.40, to P4.52 , 
General Investigation for Coherence 

P4.52 

Appendix to chapter  1  and  2 

108 

109 

111 

116 

116 
118 
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119 

120 
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124 

132 

141 

I 
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I. Operations with  Data of the  Structure So ( Yes-No-Value.) 

1) Operations with one Operand 
Negation : V  in the meaning of the calculus  of propositions 

- 
0 

2) Operations with two Operands 
V 6 V .  Vdues  for 6 : V , A , +  ,-, 9 . 
0 1  

in  the mdani?&o\f the calculus of propositions . 
*'. . 

Function  table : 
.. 

t + , l  t + + + -  

11. Operations with D- of the  Structure S1.n 

S1.n = nxSo 

1) Programs  witll one Input Variable of the  Structure S1.n 

Propositions on S 1 .n 

R ( V  ) * R  

S 0 

0 

, .-. 

P1 .O General  Disjunction-- /@'f ) ,- C J 
0 0 

( At least one element is positive ) v I  ( E x  ) ( X E V A X )  * R  

S o 1.n . o 0 

0 0 

Explicit form 

- e Z  W1 ( N (  X ) )  
V 

la 0 0  O S 
K 

0 0 

Alternative representation 

f ' ,' 
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I 

I 

- P1.l 'General Conjunction . C l  ( V ) 
0 

( All elements are positive ) 
y- -. :i 

V 
K 
S 

Explicit f o h  : .'. . 
0 0 

0 1 .n . -  . 
Alternative  representation ' 

P1.4 
P1.5 
P1.6 
P1.7 

Wl(N(V)-1) 
V 
K 

. o  

S 1 3  0 0 0  

values  for 6 : 

Program 
notation 

P1.4 

P1.5 
P1.6 ' 

P1.7 

Z *  R 
0 0 

0 0 

a Z  * R  
1 0 

1.n-1 o 

b 

V 

Meaning 

All elements are equal to each  other .Y 

of two neighbouring elements,  at least 

-+ Left of a symbol " - " , there is no symbol t " 

one is  positive 

3 * All elements have altemating values 
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- P1.8  Symmetry : 

o * i  I n - l , * j  

I 

( V - V )  A Z * Z  i t l  * i ;  j - l * j  
0 0  0 0  

K i j  
S 0 0   0 0  

Z * R .  .,, 
0 0 . "  .'- . .. 
- P1.9 Just one  element is positive 

V '  0 

K . .  
S 0 '. . ,'1 .n 

' 
. V  

- P1.9 Alternative Representation' *- 

0 

v v z * z -  
0 0 0  

i 
0 0 0. 

' Z v V * Z  W1 ( N (  V ) )   Z A (   V + Z ) * Z  
V O [ '  p o  1 0 0 0 1  

K i 

Examples for P1.0  to  P1.9 

(. .. 4 . .  

Z * A R  
0 0 

0 0 

Z A Z * R  
0 1 0  

R1 .o R1.l R1.4 R1.5 R1.6 R1.7 R1.8 R1.9 
0 0 0 . o  0 0 0 0 

- 
t 
- 
t 

t 
t 

t 

+ 
- 
t 
t 

t 

t 
t 

t 
t I 
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I 

? 
I 

? 

2) kograms with one Input Variable of the  Structure S1.n and a Result of the  Strukture S1.n 
t 

R ( V ) * R  
V 

1.n  1.n S 
0 0  

P1.16 General Negation 

w 1 (  N ( V.)) p =  ~1 

Operation Symbol: 8 V 
0 

P1.17 Mirage 
:\ 

I .  

i 
i 

P1.18  Upward Implication 

i 
f 

supposition: 

(X) R1.7  (R1.18(x)) 

P1.19 Downward Implication 

R1.17  (R1.18 (R1.17 ( V )) 3 R1.19 
0 0 0 0 

supposition : 

(X) R1.7 (Rl.l7(Rl.l9(x)) 

P1.20 Identification  of  the First Positive Element from  the Left 

supposition: 
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P m  Identification of the First Positive Element from the Right 

R1.17 (R1.20 (Rl.17 ( V  ))) * R 
0 0 0 0 0 

supposition: 

R1.9 (R1.21 ( X)) V X = 
0 .  O 1  

P1.22 Shifting$o the Right 
% ' \ .  .. . .  \ 

V 

P u  Shifting tb; the Left 

0 K 
0 

. .  

K n-1 

P u  Circulation to the Right 
% '  

W l ( N ( V ) - 1 )  
0 

P1.25 Ciculation to the Left 

P1.26 Counting Forward 

K i 

- P1 -27 Counting Backward 

- - Z  
0 

K 

Alternative Representation for P1.26,  P1.27 

P u 6  V + l * R  
0 0 

P m  V - 1 - R  
0 0 

i J 

vvz*z 
0 0 0 1  

i 

i i t  t 

C. 

t 
C .  

i 1  

1'  
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Examples for P1.16 to P1.27 'i. . r  

V R1.16 R1.17 Rl.18 R1.19 R1.20 R1.21 
! i  

P 
0 '  .. *.. 

, 1 :  
'! L 

- 
t 

- t 

t - 
-- I+ 
-t t- 
t- -t 
tt -- 
---- I+++ 
---t *- 
--t-  tt-t 

-t-t  t-t- 
+--- -* 
+-U -t-- 
*t- ---t 
ft++ --- 

t i  
't 

t: 
L 

C '  r 
! 

Y 

i 
f 

V R1.22 R1.23 R1.24 R1.25 R1.26  R1.27 
0 t 

t 
- 

t 
- 

- 
t 

- 
t f 

- 
t- 

- 
t- 
-t 
tt 
--- 
-t- 
-+-- 
t-t- 
---+ 
Cttt 
tt-t 
tttt 

t- 
tt 
-t 

* 
t- 

t -- 
-t 

*tt 
*t- 
u-- 
t--t 
---- 
--tt 
-I+- 
-tu 

t-- 
t--t 

t-t- 

U-t 
-+-- 
-ttt 

--t 
--- 

I 
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3) Various  Programs  with an Input  Variable of  the  Structure SI . n ~  

P1.32 Counting  forward w v i t h  Signal in  case of Overflow 

R (   V )  * (  R ,   R )  
C ‘. 4 _ .  

0 1 
1.n o 

, f t  
’ * &  

S 
i 

6 :  

K ’. ‘. . i i  
i 
t 

- 1 . .  ’ ?  

t * Z  W1 ( N (   V ) )   Z * R   Z * R  V A Z * Z  
0 0 0 0 0 0  0 1  0 1 < I 

. .  , 
P1.33 Counting  backward  with sgnal in case of Underflow 

R (   V )  * (  R ,   R )  I 
1 

S 1.n . l a  o 

W1 ( * . V ( ’ ? )  C .  t; . .  I 
t 

: ’ .,9 
K 

P1.36 Transfer  controlled by  V : 
Ub 1 

.. i L 
$ 

. ”  

Ub ( V ,   V )   * R  
V 
S 1.n o 1 .n 

0 1 0 

V ? o * R   V ? V * R  
1 o l l  0 0 

p1.37 Number of positive elements 

R (  V )  * R  m Q n  
0 

S 

e 
‘ t  

. t  

P1.39 Assignement of data R of the  property R1.9 ( R ) to data of the  structure S1.n , 
0 0 t .  

interpreted as binary number 

R (  V )  * 
V 

1 .n 1 .m S 
0 0 

I 

O * Z  + * Z  V /   Z - R  
0 ,  0 V 

K 
0 

S 
oJol 

I 

lJll o l in : 
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Examples 

V 0 1 2 3 4 5 6 7  
0 

W 
V 
K 
S 

V 
K 
S 

- z I 0 - t  
0 

1.m  1.m 

- 

- - 
- =$ Z W1 ( n-1 ) 

2 
0 0 [ t  -:J - . 

0 0  

z * z  
0 0 1 2 1 1  
z -1 =,z z-VR 

n-1 
- 1.n  1.n 1 .m l.md o 0 

2 

R 

I 

f 

Z * R  e 
V 

p1.41 Shiftiq downward alanlogous to P1.40 ( see P1.23 , Page 2 $ ) r / /  
1.n  1.n S 
1 0 

ad 

4) Propositions on two Data of the  Structure S1.n 

P1.64 R ( V ,  V ) * R  
P1.65 V 1 o 1 0 

P1.66 s 1.n  1.n 0 

P1.67 
P1.68 I 

t 
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Substitutions for . o 

p1.64 
P1.65 
P1.66 
P1.67 
P1.68 , 

':\ . . .  . 
For K1.6@c-V.. ,  V ) ,.can be written : 

0 1  

V =  V 
I .  0 1  

.$ 

. .  
P1.72 

h . .  * .  I 

V G V ' R  
V 0 1 0  
S 1.n 1.n o 

. , "\ 
* *_ 

V 

0 0  S 
K 

0 0  

P1.73 

V + V = . F i n  
0 1  

i i  
0 0  1 

v > v  
0 1 as P1.72 , but exchange 
1 .n 1 .n 

P1.74 

V < V * R  
0 1 0  

V 
K 
S 0 0  

Z = + R  
0 0  

0 0  

V b y  V 
0 1 

v > v  as P1.74,  but  exchangeV by V 
0 1 0 1 
. -  

I 
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5 )  Operations  with  Data of tlle Structure S1.n 

R (  V, V )   = - R  
0 1  0 

S 1.n 1.n 1.n 

P1.96 Wl(n) V d V * R  P1.96 
P1.97 V - [ 0 f P ] P1.98 

P1.97 
P1.98 K .. 
P1.99 's. ' 1 - 0 0 0  P1.99 
P1.100 . . . .  \ -'. . .. P1.100 

0'' . 

V 

h 

+ 
3 
N 

P1.104 Maj ( V, V ) =$ R ( The  highcr of the two  vdues V and V ) 
' 0  1 0 0 1 
.$ 

* .  1.n  1.n . 1.n . .  
V 4 V * Z  1 z . ; . V + R I   Z + V * R  

P1.105 hlin ( V, V ) .* R ( The  smaller of the  Values V and V 
0 1  0 0 1 

0 1 0 0. 0 $:;\ 0 0 1 0 
* I  . *_ 

V V * Z / Z t V = $ R I Z p V * R  
0 1 0 0 0 0 0 1 0  

P1.106 Ordering of two data,  the  lower  value  first 
Ord 0 

i 
f 

E 
- *  

t 
(I 

0 1  0 1  

S 1.n 1.n 1.n 1.n 
0 1  

P1.107 As P1.106 , the  highcr  value first 

0 1 0  

0 

I 

C 
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, 
I 

I 
i 
? 

r *' 

6 )  Relations between .3 Data of the  Structure S1.n 

V,  V, V interpreted as  positive  integer  binary  numbers. 
0 1  2 

R (  V ,   V ,   V )  * R  
0 1 2  0 

S 1.n  1.n  1.n o 

P1.129 V lies outside af' . I  V $nd V 
0 i ' . .  . 2 

( v < v A V < v )  V ( . v > v ~ v > v )  * R  
0 1 0 2  0 1 0 2  0 

. 111. Proesams with Pairs of Data 

Structure of the  input 2x0, (U, T) respectively. t 
In the first case the  structure of the  front elemcnt is the Same as  that of the back element. In the secoi,d 
case the two elements of the pairs are of different  structures. General structure -Symbol of a  pair: 

s2 = (0, T )  

This is mostly substituted by  Special  Symbols 

2x0; (0, T )  ; 2 X s1.n 

In  the case of 2XSl.n, the Operations of section 11, 4, 5 can be applied to the singe1 elements of the 
pair. 

1) General  Programs 

- P2.1 One element of the first pair  is equal to one element of the second  pair ( General Coherence ) 

R (  V ,   V )  * R  

S wo 2x0 0 

V 1  0 1 0 

V = V v V = V v V = V v V = V 4 ' R  
v 0 1 0 1 0 1 0 1 0  

S o o u o a o o a o  
K o o o l l o l l  

P '  
' I  
i r l  

I 
t 

I 
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p2.2 The front elements or  the back elcments arc cqual to each other ( coherence with different 
structure of the  front  and back  elernents ) . i 

9 3  
fi 1 *I3 R (   . V ,  V '. 4 + .  

, I- T 
0 1 0 ' ?  i 

4 :  
( 0 9 7 )  (037) 0 t : p  

V = V v Y = V * R  
V o l o l o  

s U U. T * ' -  - 7 .. 0 ,. 

{ 
. .  . K o Q '  -4 - 1  

L :  

r i  
P a  One pair is tlle mirror imaga of the  other 

k 

R (   V ,  Y,) * R  
V 1  0 . 1 .  . o  
S 2x0 2x0 0 . . 

P2.4 The.pairs  are equal , or one pair is the mirror image of the  other 

V = V V R 2 . 3 (  V , V )   * R  
V 0  1 0 0 1 0 

s 2x0 2x0 0 2x0 2x0 0 

t 

f 

back pair ( General coherence by Rx ) . F 
P2.8 The realtion Rx is true, at least between one element of the  front pair and  one  element of the 

Rx ( V, V )  V Rx .( V , V )  V Rx ( V , V )  V Rx ( V , V )   * R  
V 

0 0  ( J a  0 0  a a  0 S 
0 0  0 1  1 0  ' 1 1  K 
0 1  0 1   0 1  0 1  0 

I 
t 

I 
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! 

.* f 2) Blations between Pairs of t h e  Structure  WS1.n.  interpreted as  areas charcterized bv binarv t 
numbers 

a) Propositions on ?M brd.e&I  pairs 

* . .  Y 
C .  t 

t 
; 

R (   V ,  V ).*R 
1 0 

S W1.n 2Xl.n o 

p2.16 The elements of each pair  are  in  themselves ordered : t 
V G V A V Q V ' R  

V o o l l o  
K o l o l  r 
S 1.n 1.n  1.n  1.n o 

P2.17 The pairs  are ordered in relation to the first bound. .I 

. .  

R2.16 ( V , V )  A V <  V * R 
V 

1.n  1.n 1.n 1.n o S 
0 0  K 

0 1  0 1 0  

P2.18 Both areas  are equal to Zero : 

V = V A V = V * R  
V o o l l o  
K o l o l o  

P a  The areas  are separated HH 

Maj ( V , V )  < M i n  ( V , V )  V Min ( VjV j >Maj  ( Y V )  * R 
V 

0 1  0 1  0 1  0 1  0 K 
0 0  1 1  0 0  1. 1 0 

I 
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p220 The areas  are adjacent - 
) * R  

0 1 0 

S 2Xl.n 2Xl.n 0 

P2.21 The areas  are  overlapping t--------1 
H 

R1.128 ( V,V, V ) R1.129 ( V,V,V 1 V 

K * .  . "O\ 0 -  1 1 0 1  
V [. . , o l l  0 0 1  1 ] 

v I  0 0 1  

, .  

*'. . 
R1.128'( V,V,V')  h RT.129 ( V,V,V ) =$ R 

o l l  0 o l l  ] - 0  

K 0 0 1  

P= The first area  lies  within the second . 
;r 

. .  
zw ( V, V,  V ) zw, ( V,  V,  V ) * k * .  I 

0 1 1 .  - ' i\\ . *  .. o l l  0 

K 1 0 1  

p2.23 One area  lies within the other . 
R2.22 ( V, V ) V R2.22 ( V, V ) * R  

V 0  0 1 0 1 0 0 

s o  W1.n 2Xl.n 0 2Xl.n 2Xl.n o 

P2.24 The areas  have more  than one point in common 
- 

V i V A R2.19 ( V, V 1 * R  
1 0 0 1 0 

S 2Xl.n  2Xl.n o 2jCl.n a1.n 0 

Alternative representation 

R2.21 ( V, V ) R2.23 ( V,  V ) * R 
0 0 1  0 0 1  0 

b ) Propositions on ordered pairs 

Supposition : 

R2.16 ( V ) h R2.16 ( V 1 
V 
S 

0 1 
W In W 1.n 

Marginal Values 

R (  V, V ) = + R  
V 

2Xl.n 2Xl.n o S 
0 1 0 

R2.16  R2.16 B 

C .  E 
t 

f 

I; 
t 

. .  . .  t 
/1: 

i 
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P2.32 The pairs are equal 

V = V A V = V * R  
V o l o l o  
K o o l l  

p2.33 The areas  are separated 

V < V v V ’ < V * R  
0 *l, . ,  4 ’  0 0 

1 o ‘ ‘ 1  :*..o .. 
p2.34 The areas  are  neighbouring 

V =  V V V * =   V * R  
1 1 A 0 0  

. .  
etc. corresponding to 

*_ 

IV. Calculus of Lists 

S3.m = m X U 

I 

I 

t 
1 t 

ir 

C 
- *  

1) Quasi  fixed  Programs 
The  structure of the results  are only functions of the  number of elements of the  input value, but 
not of their  actual Variation ( see chapter 1, page 5%) 
a) Propositions on Lists 

P3.0 Element of a list . .  - 
. _  

R( V, V ) * R  
0 1  0 

. ~ .  

S 

e $ ‘ . I  
+ t  

abbreviated representation : 

V E V  ( see chapter 1, page 4 8 ) 
0 1 .  

W1 ( N (  V ) )  1 
V 
.K. 

1 

. . .  
Marginal  values for P311;  P3.2 

R (  V ) * R  
‘ V  

m X U  0 S 
0 0 

I 

i 
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- P3.1 All elements are equal to each other 

Implicit form 

u u m X o  U o S 
0 K 

0 0 . 0  V 
( x ) ( x E V + x = V ) * K  

Explicit form W1 (m) 

'. . '.. - 
- P3.2 All elemen&'difhr foqn each ?her 

Marginal values for P3.4 to P3.9 

- P3.4 There is a pair of elements for whichthe relatjon Rn is tme 

Implicit form 

(Ex) (Ey) (X E V A y E V A  I (X) * IQ A Ro (xJ)) =$ R 
0 0 0 

Explicit  form 

V 0  Wl(m)  [fl(m) [ 0 1  i * i  +Ro(:Ji,VJ:=$V.t] 0 0  

K 
S 

~3.5 Tflere is a pair of adjqrent elements  for which the relation Ro is true 

1.n 1s . U U 0 

t- 

- 
Implicit form 

I 
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Explicit form 

V 
K 

- P3.6 For all adjarent elements  the relation Rn is true 
I W1 (m-1) r Ro'(V,V ) * A R 1 

K 
.. 

P3.7 For every element,  another  onc exists for which the relation Rn is true 

Implicit form . 
.N 

Explicit form . L  * .  . I ,, . , -\ - ._ 
W(m) ' i # i +  Rn 

V 0  
K 

0 1  

p3.8 For every  element  and all elements  following it  the relation Ru is true 

hnplicit  form 

x E V A ~ E V A I ( X )  <I(y )  4 
0 

Explicit form 

Wl(m) W3(i+l,m) Ro (V i, V i ) =* R 
' V /  0 [ 1  0 [ O J O J l  .] 

K 

- p3.9 Coherence exists between all elements  according to the relation Ro 
hnplicit  representations  by  the predicate  Rn' (x,y) 
" Between X and y the relation  Rn is true  directly or indirectly". 

Recursive defmition  of  Ra' : 

! \ 
I 
t 

L 
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Explicit form : 

v * v  
V 0 0  
K o  
s U 0x0 

- 100 - 

V 
K 
S 

.o .. 
u u  

I 
V 
K 

0 ;1 
! 

S ox U u u  U 4  0x0 . 
* .  $ 

, '  ( X  ) ( X  E V -+ x * E ' Z  $'\.'..* R 
V 
K 

0 0 '  0 

U U mXu U 0x0 o S 

LZ(x,y) means: /M 0 
Concatenation of the lists X and y ( see  page /1(?4 j 

b ) Operations with a List, which  again  produces a list 

P3.10Addition of an element 

LZ New  element last 

L Z ( V   , V ) * R  
V 
S mXu U (m+l)Xu 

0 1  0 

V 
K m 

P3.11  New  element first 

LZ L Z ( V , V ) * R  
0 1  0 

S U mXu (m+l)Xu 

V 0  0 0 

1 .  

f 

f 

I 

C 
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P u  Insertion of the element V in  positioll V of the List V 
2 0 1 

Condition :' 0 Q V Q m 
2 

* R  
0 

(m+l)Xo 

' V * R  
1 0  - 

p3.13 Substition of the elment in  Position V by V in list V 
2 1 0 . .  

Condition : 0 5 -V .< &+ 
2 

- .. 
I R ( V ,   V ,   V )  * R '  

0 1 2  
S mXo u l.n 

V 
K 

0 

mX u 

alternative representation 

V =$ .z 
V 0  0 1  
K 

:''" 0 v=$T: 
S mXo  mXo B U 1.n mXo  mXo 

PA3. Cancellation of the  element in  Position V in the  list V 
1 0 

R (  V , V ) ' * R  
0 1 0 

S mXo 1.n (m-1)Xa 

~3 ( ~ , m - l )  
1 

K i t l  i 

P3.15  Splitting of a list 

Supposition : The  structure of the individual elements is composed. 

K K ( U j  = 7  
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, 
Meaning: " the component K of U has  the  structure T " . , ' I 

t 

, t :  

d t  

! E  
Sprc ( V )  * R 

V 
S mXo T 

-. 4..  

0 0 
t 

' f  i .  

t : p  

V 
K 
S 1 : "  

p3.16 Inversion of Sequence t i  

I 
I 

9 

.. I 

i 
i 

R (  V )  * R  
0 0.9 

S . .  
t 

V 
K B ,  $ 1  
S 

C) Programs for sorting 

Applicable for lists with elements for which thc relation X < y is defined. ( " X lesser then y " 
or '' X ranges before y " respectively ) . 

p3.24 

I p x r x E V A ( y ) ( y   E V + x < y )  
0 -  I L O  

Mjn ( V )  * R  v l  S mXu 0 U 

0 

V * Z \Vl(m) 
V 0 0  

K o  
S o u  

- 

I 

i 
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? 

K o  
S o u  u u  u u  

p3.26 Proposition A “ The list  is ordered *’ . 
Ord 0 Predicate  symbol i Ord 0 ( V ) 

. .  
0 

& 

( R3.8(R1.72)) ( . V ’ “ .),‘“P R 

S mX1.n ’ o 
V 1  0 0 0 . o  

Implicit form 
R 

- ”  

This is identical  with 

( R3.6 ( R1.72 ) ) (  V ) * R 
0 0 0 0 

Explicit  form 

W l ( N ( V ) - I )   V < V * A R  
V 0 

S K [I It1 :] 
mX1.n  1.n  1.n 

P3.27 Ordering of a  list.  Lesser elements first . 
Ord 1 

0 0 

S mXu mXu 

. t  t 

I 

For hplicit  representation we first need a criterion  stating that t he  two lists contain the Same 
elements regardless their sequence . I 
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V Q V  
V 0  

mXa mX (I S 
1 

In  cons'equ~iiq of that we gct the following  implicit  expression for P3.27 : 

0 0 

The following methbd is applied : the  sorting is  accomplished step by step by  a sorting of the elements 
o to i . After  the list is sorted up to the element i, then  the element i+l is inserted into  the L 

already  pre-sorted list as follows, the element i+l is selected and substituted  for Z1 . Z1 will Jhen I 
be continually compared .t& .the tilement E , beginning with e = i. If  Z1 is less than the element E, t 
then this  will  result  in die ned  &-xnt e' t 1,  and e wilJ  be lowered by 1. Otllerwise Z1 results  in 
the new element e t 1 and  the'inscrtion process for  the element : e t 1 will be terminated. If  the 
element, which  is to be inserted, is  less than all other elements up to i, then e = -1. In this case 
this results  in the new element 0. Zo  is the list, which has to  be currently transformed. .At the - *  

beginning it equals V , in  tlle end it results  in R. 

The Variation of the main  W-program must run from i = 0 to i = m - 2 . ( m - 1 is the highest 

5 

0 0 t 

t 

index ). At  the beginning the list  is ordered up to this element i = 0. Therefore, the fi& element to 
be inserted is the element i t 1 . In the last Variation we have i t 1 = m - 1 , therefore , i = m - 2. f 

According to the rule, chapter 1, Page &# the corresponding Variation  is ' - 4 5  

.- _ .  . - F  - 
5 
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P3.27 

Wl(m-1) 
Ord 1 ( V )  * R  

mXu  mXu 

v 1  S 

V 
K 
S 

V 
K 
S 

V 
K 
S 

=+ Z i =  
1 

U 1.n 

l 1  ," 

E '  

1 .n 

9 z =$ z €-I i 0 0  

E e+ l  
U 0  

u u  

1 E = - 1  3 z = z  
V 

1.n  1.n u u  K 
1 0  

Z * R  
V 0  

mXu mXa S 
0 

. .  

P3.28 As P3.27 , however the highest values first . 
" > " instead of " < " . 

Ord 2 ( V )  * R  
0 0 

Example for P3.27 V =  ( 3 , 2 , 1 , 7 )  
0 

zo . zl' 
i e 0 1 2 3  

0 0 3 2 1 7  2 
0 - 1 3 3  

7 2 2 1 2 3 7  
1 2  3  7 1 - 1 2  
1 1 0 2 3 3 7  
1 1 1 2 3 1 7  
2 1 7  

i 

t '  t 
' 

F 

F 
C 

! I I  

I 
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d) kograms for counting 

N ( V ) = " number  of elements of the list V " 
0 0 

P3.29 

(N(,RO))(V)=-N(~(XEVAR~(X)) 
0 

Explicit foqn 

O * €  
*. . \. ' .  \ .'. . .- 

(etl*e) 
0 

B.30 Number of elemehts hat-are different from each other 

V 
S 

V 
K 
S 

V 
K 
S 

mX U 1.n ' 

N ( B ( x €  V ) ) *  R 
0 0 

Explicit form 

V * Z  
0 0  

mXu 0x0 

W 

I m  I 1.n 
0 9  

L 

2 
1 .n 

z * z  
0 2  
0 

U 0  

0 1 

1.n  1.n 1.n 1.n 

' Z = Z ? ( E + I * E )  

2 0  0 0 

i 
U U  

U 

E *  E 

1 2 

1.n In 

e t 1 * E -  

1 1 

F 

i: 
f t 
# r l  

C 
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e ) Propositions on two lists 

Marginal  values for P3.32 to  P3.36 

1 

? 

R( V ,  V )  = - R  
V 0 1 0 

S mXo nXo 

p3.32 Identity of fwo lists 

Ord 1 ( V )  = O r d  1 ( V )   * R  
0 1 ,  0 

P3.34 “ At least one element is contained in both lists ” 

Implicit form 1 

( E x  ) ( X € V A X E V ) * R  
0 1 ’  , o  I 

I 

Explicit form ~. 

i 

W1 ( 4  [ Yl(n) [ = :J; - V;]] 
V 0  
K 

F’3.35 For every elcment of the  first list there  exists a n  equal element in  the second list ( sequence and I 
number of repetitions may  be different , however ) . 
Implicit  form ‘ 

f 

. (  1 0  * R1 
In Observation of the rules of chapter 1, page the following  expression  resuits - 

+*: [ :l(m) - =- z W I  ( n )  
V K 1 1  [y:=q-;v:=:]J:p*:]~, I 

Z * R  
0 0  

f 

f 
t 
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5 
? 

This can be transformed according to the rule of cllapter p, pagc y f n t o  the form 
: * A f ]  .. 4 + .  P 

, ic i  
V ' 5  ; 

K r # b  
€3.36 All elements of the first list  are also contained in the second list, and vice versa. ( 

respectively 

R3.35 ( V, V ) n R3.34 ( V, V ) * R 
0 1 ' .  . l O '  0 

A 

$ 

This expression can be simpfified: lfo? this will not be  discussed here. 
* $  

f ) Propositions on two lists for which a relation Ra is true. 

Marginal  values for P3.40 to P3.44 

( R (  Ro ) I (  V 9 V ) = S R  
V 

mXo nXo 0 S 
0 1 0 

I' 
L 

L. e 
t 
B 

i 

E 
- "  

t 

P3.40 For every two elements of the Same index the relation Ro is true. F 
Supposition : m = n 

( The lists can be projected on each other  without  a Change of sequence of the elements ) . e 
r .  

W1 ( m ) Ra ( Y, 

K V [ i i  * 7  
0 1  

P3.41 '' The lists can be projected on each other by a Change of the sequence of elements '* . 
R3.40 ( Ord 1 ( V ) , Ord 1 ( V ))* R 
0 0 1 0 

P3.42 According to P3.34,  P3.35,  P3.36 

p3.43 ?,however, instead of the relation. " = " the relation .'' Ra " . il . ... ~ . - 
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i 

, ' t  

g )Production of a  new  list from two given lists : k 

p3.48 Horizontal composition of two lists with the same number of elements. T h e  elemepts yi~h the E 
3 ;  

same index are combined . , 1 :  
'! L 

V 
K 
S u u  

The Operation  Symbol Lz may also be  applied to more than two lists , respecrively to Single 

L2 ( V , V , ... , ' V  ) 
' 1  

0x0 0x0 0x0 

P a  Horizontal composition with a constant 

I 
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( Constant second ) 
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U. 
1 4. . 

' 4  

The  Operation  symbol Qz is also  applicable to several lists with an equal  number of elements 
respectively  singje  elements. 

.$ 

Qz ( V  , V * , ,  V -  I ' . . )  V )  

du,. m b  mXu2 mxu, 
0 1 L * . . 2 n . .  

P3.52 Numbering of elements 

. Nr Nr( V ) =$ R 
0 0 

S mX( 1 .n,o) 
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Examples for Lz, Qz and Nr I 

V. = (13,24,  01, 53) 

V1 = (12, 17) 

V2 = .(03,  13,  12) 

LZ (V, V) = (13,24,01, 53,  12,  17) 
0 - 1  . 

. LZ (V;.V) = (12, 17, 13,24,01,  53) 
3 .. .P  ,o - 

%’. . 
Lz (V, V, V) =“(13,24;‘01,  53,  12,  17,03,  13, 12) 

0 1 2  

V1 =*. j7 ,5 ,3 ,  1) 

V2 *= (a,l.7,>,-6) 
* .  I 

L .  

Qz (V, V) = (a7, c5, b3, f l )  
0 1  

Qz (V,  V) = (a7, PS, 73,611 

Qz (V, V, V) = ( ~ 7 ,  cj5, by3,  f61) 

2 1  

0 2 1  

V3 = a 

Qz W, V) = (W ac,  ab, af) 

Qz (V, V) = (-9 Pa, W, 6 4  

3 0  

2 3  

Nr ( V ) = (Oa, lc, 2b, 3f )  

5 

t! 

f 

0 

2) Free Calculus of Lists I 
( The  results are lists  of variable  size ) 

B A 4   ? ( x € V A R C ( X ) ) * R  

p3.65 ~ ~ ( x E v ~ R o ( x ) ) = - R  

0 

see chapter  1, page 70 -Yx 
0 0 . .  

C 
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from i = o to i = V 
1 

Implicit forni 
R 
X ( X E V ' . ,  1. -('X).< V ) * R .'-. 1 0 

0 .  

. .  \ 
\. 

Explicit form 

V 
K 

1 
. .  

P3.67 Partial list from - iG* . 'v , '+  i = m - 1 
1 * * -  

V 
' K  

Tl-2 ( V , V (m - V ) X o  
V 

Implicit form 

rnXo 1.n S 
0 1 

X (  x E V A I  ( x ) > v )  * R  
0 1 0 

Explicit form : 

V 

P3.68 Evaluation of the number of identical elements 

K 
1 

R ( V  ) = R  
0 0 

mX D DX(c7,l.n ) 

Implicit form 

j ;  ( X . €  V )  *SpO ( R )  

i ; 

t 
L 

t 

f 
t 
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Explicit form 

N ( ~ ( x E V A X = Z ) )   * Z  
V 

S 1.n U mXu U 1 .n 
i i K 

0 0 

Z = SpO ( R ) means : the list of the elements contained in V without  repetitions . 
0 *. .'.. . .  , o -  

0 

%'. . .._ \. 
Z = Spl ( R ) specifies how frequently the corresponding element is contained in V . 
1 0 0 

:\ 

Example : I . . V = ( 14,  13, 1, 14, 1, 1 , 9 , 4 )  
0 . .  

P3.69 Combination of the elements, which cohere through the reiation RO . The cohering elements 
are each compiled to a group. These are nurnbered and supplemented by a group number. 

R( V )  * R  
V 0 O 

S mXo oX(o,ln) C/ 
p3.9 , Page =pf ( /Cu 0) 

Meaning of the intermediate values : 

Zo List for compiling the group  just investigated 

Z1 Element which is just being tested for coherence with other elements 

Z2 List for compiling the result 

Z3 Remainder list of the elements not yet assigned to groups 

e Group number 

I 

P 
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P3.69 

I V  * z  0;z 
3 2 
ox U oX(a,l.n) 

W6 
V 
K 
S 

V 
K 
S 

S 

YI S 

V 
S 

V 
S 

Z 
2 

1 

? 

I 

OX(o,l;n) f 

R =  
0 

f 

Group 0 = ( 3, 5,4 ) 

Group 1 = ( 7,9 ) 

Group 2 = ( 15, 16 ) f 
I 

I 
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P3.70 Union of two lists 

V U V * R  
1 0 I I :xo nXo 0x0 

$ (  x E V . V X E V )  " R  
0 '. 1 0 

* . '.. 
P= Section'ol  tvh-lists .- 

V n V = * R  
V 0  1 .  0 

S mXo nXdr 0x0 

?C(  x E V A X E V ) . ? R  
. .  

0 .*1 ', 0 
* . "\ 

* .  I 

Note : 
.. 

* ._ 
t 

In the calculus of lists the commutative law for the  Operations U and n is not true. There - f  
fore , it is not generally true that : a 

- "  

V U V = ' V  U V 
0 1 1 0 

9 v n v = v n v  
0 1 1 0 

F 
The two cases differ in the sequence of the operands. The first list is competent  for  the  sequence. 

I 

But it is generally true that 

v u  V % V  U V 
0 1 1 0 

Example 

C 
Konrad Zuse Internet Archive http://zuse.zib.de

License: CC-BY-NC-SA



- 116 - 

V. Programs  with  Lists of Pairs 

( Calculus of Relations ) 
~- 

1) General 

I 
I 
? 
i 

M *  

, $  

* . In mathematical logic a relation represents  a predicate with two variables, for instmct? 2 <*b.-I? I 
genetal representation , a relation may be represented by an Operation symbol.(  for instance " <*' ) , i 

or by  a predicate Symbol ( e.g. Verb ( a,b ) 5 a  is connected to b ) . 

In  the Special repiesentation mainly three f o r m  can  be  distinguished : ( 
a) Graphic rep.resentation by an arrow-diagram 

Example :. * 8 # ?  
" Pole X 'is connected conduc'tively with pole  y " f ;  > 

4 :  

t *. - 
*'. . 

a 
b 

r 

4 5 
. . .. 

Since this relation  is  symmetrical, it is represented by antidirentional arrows. For  the  set  of  elements 
0, 1, 2, 3 the relation  a < b has the following diagram : f 

2 3 
b) Representation by a matrix : 

For the  two examples of a) the matrices have the following form : I 
1 2 3 4 5 6 7 8 9 1 0  

1 + +  
2 t t t  -+ 
3 
4 

t t  t 

t t t  9 
t t t t  8 

t t t +  7 
t t t t  6 

t t  5 
t t 

10 t t' 

L 

t +  

The  matrix of the symmetrical relation  is symmetrical to the  main  diagonal. 

E 
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Representation by  a list of pairs . 
The pair list contains al l  pairs of elements for whicll the relation Rn is true. For the  two 
examples mentioned above  the lists have the following form : .. 4.. 

(. 

d $  

4 I r  
i 

3 
8 
8 
9 
9 

10 
2 
7 
7 
8 
7 
6 
4 
6 
4 
5 

1 - 2  0 - 1  
2 - 1   0 - 2  
2 - ' 3  0 - 3  ; 
3 .   - ' . . 2  1 - - 2  

I'.-, ', .8 : 1 - 3  I ?  

.- '5' - ._ .- 2 - 3  

I 

i 
V 

- 9  
- 8  
- 40 
- .  .g . 
- 7 .  . .  

- 7  
- 6  
- 7  
- 6  
- 4  
- 5  
- 4  

r 
Since the relation '' conductively connected to " is generally  symmetrical ( if rectifiers are excluded ) 
then  the  duplicate listings  can  be rephced by  the single ones following : F 

I 
1 - 2  t 
2 - 3  

. 3  - 8 ! f  
8 - 9  
9 - 10 
2 - 7  
7 - 8  I 
7 - 6  
4 - 6  i 
4 - 5  

Representation by  a list of  pairs  is  best suited  for computations. Consequently, the  theory of lists 
of pairs will  be  discussed first . 

The general structure Symbol for  iists ofpairs is S.4 ' 

S.4= m X ( 6 , r )  
I 

The first element of a pair is called " front elernent " the second " back element " . Generally , the 
front ielernents may be of another  structure than the back  elements.  However , with symmetrical 

' .  
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- 
. ,  

i 

. , I  

relations U = T is true. The  structure of thc list then is m X 20 . Generally all programs for lists ! I  t 
can be applied to lists of pairs , wherein the elements of the list are identical with the pair . As an 
example the expression .. 4 * .  

! ' i  

* I r  

V 0  
s 4  '4 t 

1 . 1  F 

fi 

4 i 
V % V  ; j +  

1 -  

states , that .. Y' and Y represent tlle Same relation, possibly however, in a  different sequence of , 
the members. -'- .. 

. . o \  I )  

r t  .. ! 

2) Propbsitions on 1ist.I; of pairs ( see also section 5 ,  Page /I t+ /1') 'J -' / . 

- P4.1 

V. 
S 

- P4.2 

V 

K I  S 

V 
K 

V 
S 

Front  elements and bakk elements are of the Same structure Marginal  values for P4.1 to P4.10 b . .  F 
1 **,& ,'$ t - ._ i 

S mX Wo 0 '  d 
, , 2 

Coherence of all pairs 

( R3.9 ( R2.8 ) )( V 1 * R  
0 0 0 0 

mX 2x0 0 

To a list of pairs, for which R4.1 is true, an arrow diagram coherent in all elements exists , e.g. 
figures on Page 4 6 .  / F 

The list contains F 
( E x ) ( x E V  A x = x ) *  R 

0 0 

0 1  
20 0x20 (J ' ( J  0 

The list contains pairs of pairs of which one is the mirror image of the  other 

(EX)(Ey)(XEVA Y E V A  I ( X ) * i ( y ) A x y A x = y ) *  R 
0 0 0 

0 1  1 0  

Explicit form according to P3.4 , page g 3 
" The list contains  no  repetitions and no mirror image " 

R3.2 ( V )< r\ :R4.3 ( V ) * R .  
0 0 " L: 0 0 0 

0 OX 2a 0 OX 2a 0 

J 
r' 
1 ;  

f 
f 

C 
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- P4.6 "For each pair there exists a mirror image ( condition for symmetry ), 

y E V  A I(x) 
V 
K 
S 

0 

. .  \ .  

(see  P3.7;page 4'7 ',O,JQ '* 

.'. . 

- P4.7 " All front elements are different from all back elements ". 

V I O' . 

' ~ 

s 20 20 20 mx20 .mxjp O 0 0 d 1 0 

K. 
. .  

& ' . .  

- P4.8 General incoherence of the pairs 

(R3.4 (R2.8)) ( V ) - R 
0 0 . o  0 

- P4.9. Condition for reflexivity , 

" Each front or back element mentioned is listed as a pair with itself". 

P4.10 Condition for transitivity 

X E V  A X=X+(EX) X E V  A X = X r \ X = X '  

1 0  
O 1  2 [ 2 0  0 0 1 1  

0 2 1 2  

20 mX2u U 20  20 mX20 a 0 U 

K 1 0  

b) Propositions on lists of pairs 

Front  and back elements of  different  structure 

Marginal  values for P4.12 to P4.15 

* R  
0 

0 1 

t 

i 
t 

I 
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P4.12 Coherence of all pairs 

( R3.9 ( R2.2 ) )( V ) 3 R 
0 0 0 0 

- 120 - 

p4.13 All front elements are equal to each other 

R3.1 ( SpO ( V ) ) *  R 
'. * .  \, 0. 0 ' .  \ 

P u  All back  elcrnents Be equal'to each other 
.'. . 

R3.1 ( S p l .  ( V ) )* R 
0 .  0 A 

. .  
3) Programs  for  ordering of  lists  of.pairs 

4 .  

Supposition : X < y. IS hefi& for the structures of the pairs elements 

Marginal values for  P4.24 to P4.27 

R( V 1 * R  
V 
S mX(o,.r) Ma,.r)  

0 0 

. .  . ~. . . . . .  . .  

I 
i ; 

' 

i 
f 
i 

I 
- "  

f 

t 

i 
Konrad Zuse Internet Archive http://zuse.zib.de

License: CC-BY-NC-SA



L. . 

I 

- 121 - 

P* Ordering of the  psirs  refering to the  front  elernents & s e t p g ~  

* z  

i =,;SE 

1.n  1.n 
I 

L 
i 

V 
K 
S 

V 
K 
S 

E = -1 q-z * z  - 

l 1  0 V 
K 
S L 

F 
f 

P4.25 Ordering  referring to the back elements 

Ord 3 I O r d 3 (  

) * R  
0 0 

S m(0,r) mX(o,7) 

As P4.24 ; however,Z < Z instead of Z < Z 
1 0 -  1 0  
1 e.1 1 E.0  

7 7  0 0  
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Pa60rdering reffering to front  and back elcments. Front elements have  Preference  however . 
Ord 4 1 =,R 

0 

S mX(u,T)  mX(u,.r) 

V 
S 

V 
K 
S 

V 
K 
S 

V 
K 
s .  

V 
K 
S 

V 
K 
S 

W1 (m-1). 

V ' Z < Z   ( Z = . Z  Z < Z )  = + z  
1 0  1 0 1 0  2 

'\ 0 e.0 0 e.0 1 E.1 ' . .  
-U U 0 0 7 7  0 

T 
* z  E-1 * E 

0 

e t  1 
0 f (U,T) (W) 

X -. '- 

Z * R  
V 0  0 

S mX(o,r)  mX(o,r) 

P a  Ord 5 ( V ) as P4.26. Here however , back elements have  Preference. 

Ord 5 Alternative  expression for Z . 
0 

2 
z < z V (  z = z A z < z ) * z  

V 1 0  1 0 1 0  2 
K 
S r 7  7 r u u  0 

1 6.1 1 E.1 0 e-0 

". 4. . 
.& 

L 

I 
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P4.28 Ordering wvithin the pairs 

Ord 6 
V 
S 

v 
K 
S 

Ord 6 ( V 1 e R  
0 0 

mX 2x0 mX 20 

( V ) ) "  R 
0 

i i 
. .  \. 2x0 ..'. . .. 

4) Field, Front Area and ßack Area of a List of Pairs, respectively  a Relation 

Marginal values fo;]p4.3? ; p4.33;  p4.34 

P4.32 Field of a list of pairs 

[ 0 0 '1 *: x E S p O  ( V  ) v x E S p l  ( V  

S U mXa  mX2u U mXo mX2u ox 0 

Function Symbol : Ca ( V ) ( c.RLl.k.. I" $ 8 , .  3 ) 
0 

&- --c-@m- 
P4.33 Front Area of a list of pairs . 

V 0 

S mXa YHZZ 0x0 V 
Function  Symbol  Vb ( V ) 

0 

P4.34 Back  Area of a list of pairs 

S 

F 

F 
f 

f 

I 
* I  

Function  Symbol Nb ( V 
0 

i 
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5) Progranx  for  Structures of Relations  represented  by  Lists of Pairs 

P4.49 Subprogram : Number of the connections of an element of a  pair. 

9 V )  - R  
1 0 

S mX2o . U 1 .n 

V 
K 
S 20 mX20 U ox 20 

X $ z  A ( x  = v v  X = 
V 
K 

.\ 

% .  0 .  , 1  0 

- 0  1 
S 20 ox2o*.* Q U 0 (7 * .  I 1 .n 

L . .,"U 
Marginal  values fdr P4.41 i Ö  P4.45 

R ( V   ) - R  
V 

mX2o o S 
0 0 

i 
i 

L 

. t  
t 
F 

i 

I 

5 
- *  

P4.41 The  relation consists of indiildualcircleswith at least 3 elements. 

F 

P 
r 

R4.4(  V ) A . ( X )  X E Ca( V )  + R4.40 ( V , X ) = 2 t 
0 0 0 0 '  

S 0 0 0x0 1 .n mX2o U 1 .n 

P S  The  relation  consists of a Single circle 

R4.1 ( V ) A R4.41 ( V ) =. R 
0 0 0 

mX2o 0 mX2u o 1 
P* The  relation  consists of individual  chains 

R ~ . ~ ( v ) ~ ( x )  r x E C a ( V ) - + r R 4 . 4 0 ( V , ~ ) = l ~ l  =$ R 

P4.44 The  relation consists of a Single chain. 

R4.1 ( V ) A R4.43 ( V ) * R 
0 0 0  0 0 

i 
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P u  All elements are coherent : 

( The arrow diagram is a  coherent figure ) . ' 

(R3.9 ( R2.1 ) )( V 1 * R  
V 0  0 0 0 

S mX 20 0 

Explicit form. 

V 0  
K o  
s 2 0  

V /  w6 

K 1  S 

L 

\. 
OX 20 

P S  Univocal coherence of all elements 

( one way principle ) : 

R( V ) * R  
V 

mX2u o S 
0 0 

(X)( x E V + x  * X )  

V 

. 2 0  0 0  S 
0 1  K 

0 

Definition : 

0 

0 

If the front and back elements of the pairs contained in 

V is true  for any two different Points. 
0 

'C . 4- . 
' 5  

A X  E Z  A R2.1 (Z, X ) 
0 0 1  

20  0x20 0 2 0 2 6  

V are cal1e.d Points, then X and y of 
0 

There does exist  just  one list Z, the elements of which are Points of V with the following propelty. I 
The first elernent of Z equals X 

The last element of Z equals y . ' 

All pairs composed of adjacent elements of Z are elements of V . 

In  other words : for any two Points X, y  of  V there exists a chain of pairs of Points which 
are elements of, V.  The first pair of the chai: contains X and the last pair Y, wherein the , 
adjacent elements $f the chain are.coherent. ' ' 

0 

0 
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The exact  fornwlation of this Statement is complicated. : 

Another defintion is  given Preference: I ' t. 

. .  
Recursive defintion: ? 1; ! E  

b 

A Single non-symmetrical pair is a univocally coherent list of pairs. By supplementkg  a Uirivoplly I 1 
coherent list of pairs by a new non-symmetrical pair, another univocally coherent list is prodkced, i 
if just one and only one point of the new pair is equal to a  point of the given list of pairs. In t h i s  ~ * L  
way the following program  is, generated: 2 

(1) Thc first pai) of V forms the first stage  of the growing list Z. i __  I.I /r 
1 ' "  

Z1 is thelist of the remgining pairs of V , i.e. of those not contained in Z. I 

* ) .  ( 

0 . .  
. *  

. X -  
0 

0 0 r ' i  
(2) The list Z1 is investigatcd for  the  next element, the  front element or the back element 

of which*js contained in the field of Z . If both are contained therein,  then ambiguity exists 
*$ a 

ind R;, must  %e negative. The investigation is then terminated. . .  
L 

* &  

The investigatioX(2) i a s  to be repeated as long as there arc elements of Z1 available which 2 
fulfa the requ6st iwdbherence. i 

i 
(3) If Z1 does not  contdn coherent elements, then incoherence exists and  R  must be  negative; 

cb 0 

- *  If fmally  Z1  is empty  then R is posthe. 
0 

The corresponding programs are as follows: 

I v*z 
V 0  
K o  
s 20 

K 
S I  

V 
K 
S L 

0 

ox 20 

0 0 

' p ' x r x E V  A x E Z  A (Ei) y E C a ( Z )  A ( y = ; x J y = x )  
,I 

0 \ 
' /  

0 .-' 1 
U 0x0 0 0 0 0 ~  

r Z * / l R  Z = Z * F i n  3 
1 1  0 

- 0 0  0 U 0  

0 1  0 1  
1 1  

6 

N ( Z ) =  N ( V ) *  AR 
V 

0x20 mX2a o S 
0 0 0 

f ' 

f 
* z  

1 ; !  
20 ! #  

This program is  very complicated for computation, since the remaining pairs have to be investigated 
for every new point of a  coherent pair, and their front and back elements have to be compared to 
all pairs already connected. This procedure can  be  avoided if out of the already connected Points 
( field of 2 ) one point is occasionally selected and then the list of the remaining elements V, 

is searched for all elements which  are coherent to  that point. 
0 I 

i 
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i 
L 

In this program  the  expression  for Z2 and Z3 can be combined if an investigation is made as ' .. 

to whether  the condition Z3 is  true for this element immediately  after  the  generation of a - 5 
new element Z2. 

v * z  . .  i 
V 0 0  

K o  
s 2u 0x20 F 

- 
p x ( x € C a  ( Z ) )  * Z  

0 - 1  F 
S U 

f 

7 

V 
K 

0 1 2 

u u a u  20 S 
0 1 

x E C a  ( I 
V 
K 

0 1 2 3 

U 0x0 u u a a a u  0 S 
0 

5 L z ( Z  , z  ) " Z  

0 2 0 

S 0x20 0x20 OX 20 

N( Z ) = N (  V ) * A R  
0 0 

S mX 20 

C 
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' ?  

J 

, 
i 

1 1 5  j 

This  program  can  also be sinlplified. It is not necessary to cxtcnd  the Variation of X in the CX- ; ft 
Pression for Z3 over the whole  area of the field of Zo; it is sufficient to  do so only for those , ' j 
Points for which the coherent pairs  have not  yet been connected. L ? 
Now, an auxiliary  value Z4  is introduced. This is equal to the list of the alread~cbnneEted,pointl, T E 
but it has not yet been  investigated for coherence. So the final fonn of P4.49 is developed." ; 

! E  

; L  
P4.49 d !  

[ -- . .  

I V * z '..','Z\ *-z 
V 
K o  

0 4.. 0 0 .  

U 0x0 20 0x20 s 
0.0 

'%'. . 1 :  .- r t  
I 

3 

I .  

4 1. . 

E V' A i ' c* -z  I A ' (  X = 

S 
I 

U 0x0 *., U ., 

d V 0 - 0  1 2 

C .  B 
. .  $ 

t - ' :\, ; 

K 0 1 
S mX2u U 0x20. u u u u  20 - "  

I 

S 2 0 0  U 

x E Z  A X =  f 
4 

S U 0x0 U U 0 C 

Z * A f l  4 ' F i n 5  
Lz( Z , Z ) * Z  

Lz( z , Z )  * z  

0 2 0 

S 0 0  0x20 20 ox 20 

4 5 4 
S 0x0 U ox 0 d 

N (  Z ) = N (  V ) * R  ' 

V 
OX 20 mX2u -0 ' S 
0 0 0 

I 
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I 

P4.49 

Legend of the Intermediatc Values : 
i .. 4.. . I Zo Compiling list of the connected Pairs 8 4 :  

Z1 Point just investigated for coherence 

Z2 Pair to be  newly connected .r 
t 

Z3 * ," Th<.new point ( Zg ) is  univocally connected *' . i 

Z4 List  of'2o'nnected Points not  yet investigated  for  coherence. 

Z5 Newly connected poi1:t. 

In this  progfam another auxiliary vahe Z5 is introduced , which  is equal to the newly ' ' ! ;  t 
connected point  ('that  point of the newly connected pair Z2 which  is not equal to  Z1 ) . p 

Then the expressioh for ZJ becomes  especially  simple. Instead of X E Ca ( Z ) A X  * z '  2 r 

it reads : X E Z , since' '2 in the  partial list of Ca ( Z ) with those elements, for which j 1 

the  investigation is only relevant.  Because of the p - rule , Z1 is no longer contained in Z , 

so that  the expression X * Z can be omitted. 

Furthermore,  the expression 

' 4  i 

d >  

' . .  - 
' ?  

1 { '  

* .  \ . I\\ 0 . .  l *  

4 * 4  0 
t 

4 - "  
B 

1 _ .  . i 
x = z v x = z  

2 2 
0 1 

can be substituted by : X = Z 
5 

The connected point Z5 has to be added to the  list Z4 in each evaluation. 

P4.50 Combination of coherent elements in  proups. 

V 
S 

R (  V ) = S R  
0 0 

mX2u mX(2o,l.n) 

( R3.69 (R2.1  ) )  ( V )  =$ R 
0 0 0 0 

t 
t 

I 
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p4.51 Investigation for univocal coherence and ordering into  coherent groups.  Merger  of  programs 1 
1 P4.49 and P4.50 . In  addition,  production of a list cf.  the degree of determiqation of  the PI 

groups. * J :  
' 9  i 

. 4. ~ 

Supposition ; no symmetrical  Pairs ( the Same , as with ~4.49 . 
+'. . .. 

Legend of the  results : 

Ro " The dist of pairs  is  univocally coherent " . .+ 
R1 List of.pairs.ordered according to their coherence with the numbers of the group. C 

R2 List of the dkgree Qf determination of die groups with group numbers. C .  e 
t 

R Number of'group ,' R-= Degree of determination. 

. .  P 

* .  \ 
L .  >Al 

$ 

2 - 2  h 

I '  t 

0 I 

For a group univocally coherent in itself, the degree of determination is 1 .  Each duplicate 
pair and each pair redundant with regard to coherence increases the degree of determination t 
e by 1. 

Example : t 
1 - 2  e = l  
2 - 3  
2 - 4  
2 - 5  

1 - 2   e = 2  
2 - 3  
2 - 4  
3 - 4  

1 - 2  
3 - 4  
2 + 3  
2 - 4  
3 - 4  
4 - 5  
5 - 2  

E = 4 '  

/ 
J 
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1 ( 1,. 

L '  f 

P4.51  is  developcd out of 1'4.49 ( sce pagcnJ5 ). The ivestigation,  in  P4.49  applied to the  entire 3 
]ist of pairs,  concerns  a Single group only  in P4.5  1. Therefore , a  main W - program is required I ' 

' ,  

to  investigate the various  groups step by step. t t ! .E 
F 

Here the  entire list V is  replaced  by the renlainder list Zl0, which represents the.Iist ortlielpairs J $ ' 

of V not  yet connected after completion of a  group. Consequently, Zl0 must be equal to V at . 

the beginning. Zo represents only tlle  compiling list of the  just investigated  group. Therefore, another 5 d r ,  

compiling list Zl0 is required for tlle production of R ( list of the  sorted pairs ). After completion t 

' of a  group,'thf pair list of the  last group Zo is supplemented by the group number eo . I : "  

Until the evaluation o i  Z3 everything proceeds analogous to P4.49. in the case of Z3 , e1 I 

must be  increased  by 1, since it is then a redundant pair with regard to coherence . b 

After completion of a group, in addition to the evaluation of Z1 the  next element R2 which L 

is composed of the two ri 2 values  has to be  generated. c -  Y e 
? 

The condition foi Ro ( { L .  ) ) standing at  the end of P4.49  is  replaced by the  condition  that 
in the  end e l  = 1,  if R 'is positive, i.e. of V, consists only of one Single coherent group. i 

0 ? 

s 

0 i 

0 0 

1 i 

t i  
. -. \. 

& , 1 .  '1 

\ 
' n * .  t 

Examples for P4.5 1 
. .  .. . .. . .  - .  . . . . . . . . . . - . . t . .- . -. 

Ro R1 R2 Coordinated diagram of .. 
relations 

1 - 2  t 1 - 2 , 0  0 ,  1 
2 - 3  2 - 3 , 0  
2 - 4  2 - 4 ,  0 
4 - 5  4 - s.,  0 

t 

4 - 6  4 - 6 ,  0 t 

1 - 2 ,  0 1 - 2  - 0 , 3  
2 - 3  1 - 3 ,  0 . 1  9 1 
1 - 3  0 - l , o  2 9 1  

d y  > Y  1 J 

fl J 
2 

3 - 4  2 - - 3  , 0 2 
2 - 3  2 - 3 ,  0 5 

20 -21 
0 - 1  
0 - 4  

22  -21 
10 - 9 
a - 9  
5 - 6  
7 - 6  
6 - 8  

0 - 4 ,  0 
3 - 4 ,  0 

20 -21 , 1 
22 -21 , 1 
10 - 9 ,  2 

6 - 8 ,  2 
5 - 6 ,  2 
7 - 6 ,  2 

a - 9 ;  2 

i 
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An important  application of P4.49 and P4.51 is the following Problem : 

Measurement 01) an axis . / 
Example : 

.. 

List of dimensions : 

1 - 2  ;, 
2 - 3  
2 - 4  
4 - 5  4 

. .  

L * . . 1.. 

L 

I . e  
t 

4 - 6  . , “P - .In this example tlle measurement is  a  univocal one . 3 
b 

Another example : telephone networks . i ,  

8 
If they are  univocal then only one connection is  possible between any pair of subscribers - ”  

i 
P a  Extension of P4.51 ! 

General  analyses of a random list of pairs  in  regard to coherence. Symmetrical pairs  are to 
be extracted separately. Further,  the multiple pairs and  the mirrored pairs are specially  selecte 

Marginal Values . 
4 

I 
Legend of the  structure symbols : + t  

1 R( g, - [ R y  ; , X  Y R ,  R 9  R ,  R 1 
f 

0 2 3 4 5 6  t 
S o OX(2,9) ox  2x9 o 4 o oX(2.9) 

So = Yes-No-Value 

S2 = 2Xa pair of data 

S3 = 0x0 list . 

S4 = 0x20 list of pairs 

Sg = positive integer  number 

I 

I 
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? 

. I  

Meaning of the  result  values : t 
1 .  r' 

J !  
Ro Tlle  list of pairs V. is univocally coherent. ' 1 

R1 List of pairs ordered by groups, and supplemented by  a group number. '! i 

R3 " The'list contains symmetrical pairs " . ' 7 

)I .. ql. 

;)C 
R2 List of the groups and of their degrees of determination. 

R4 L,ist;of\the symmetrical pairs. I ?  i 
1'. . 

R5 "%C list contains,  Pairs:'  which  are  equal to another pair or to  the  mirror image of it. t i  

R6 List of pairs  according Rg . 5 

Legend of the intermediate values : 
& 1 .  t 

' 

V 1  I 
s 4  

V ( :  
s 4  

Y/; 
s 3  

S .15 
V / :  
s 2  

Z 

S 1: 
Z 

S 

Z 
V 7  
s o  

Z 

S 

. .  
List of iemainqers of V. after completion of a group 

L . .  * .  t 
R\ 

. I  
* *- 

Compiling list of the  group just being  developed 

List of the;'points already connected to Zs 

List of  the already connected Points of the  just evaluated group 

Last_ newly connected pair 

Point,  the connections of  which  are just being  investigated for coherence 

Las! point connected to Zs via Z4 

Criterion for '' multiple pair " 

Criterion for ambiguous coherence 

F 
I 

# I f  

t 

- I  

i 
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p4.52 

V 
S 

V 
K 
S 

V 
S 

V 
K 
S 

V 
K 
S 

V 
S 

- 134 - , 

Z Compiling  list of the result R1 
V 1 10 
s OX(2,9)  1 Group-number 

s 9 .  

. E  Degree of determination of the  just  evduated group 
v 1 i . . ' . '  'I ~ . .'. . 
s 9 -  .. . 

W6 
0 3  1 1 
0.0 

0 3  4 9 

W . C o ; ( x E   Z ) *  2 o * z  

3 .  0 3 

3 i [  

W 

L 2 4 2 4 u u u u  ' J  1 0 1 5 
0 1 

- 1  

I 
I 

i 
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V 
S 

V 
S 

V 
S 

V 
S 

V 
S 

V 
S 

V 
S 
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' 1. 

= + R  
5 
0 

._ 1 4 1 
4 2  4 

0 1  
9 9  4 2 /  

f 

P 
0 1 0 t 

2 4  4 4 1  9 9 

8 
( e = l  ) *  R 

1 0 

9 0 

10 1 
' nX(2,9)  oX(2,9) 

Formulation of P4.52 in words : 

@ The aven  kput of pair V .represents  the first stage of the hst z . .' 

@ n e  list zl0 is empty at  the  start 

@ Co i~ Zero at the start . ._"..--C.. : 

0 0 

The first Point of t11e first  pair of Z, results in z3 . If Z, is empty , 

@ Set E l  = 1 

i 
Konrad Zuse Internet Archive http://zuse.zib.de

License: CC-BY-NC-SA



; 
S 

- 136 - I 

! 

Set Z1 q5 (cnipty list). In the beginning Z1 is empty. In case of  repetitions  the 
hitherto  fo-med elements of Z1 must be cancelled. 

' b  

If no such elernent exists, tllen go to@ .. 4. ~ b 

, ' C 

f \ 
The next not yet considered element of the list Z3 result in Z5. q 

Set Z2 = 4 (ernpty list). 

Select out of the Set of pairs the  next pair contained in Zo, but  not  contained in Z1, 6 +  

in \;hich one element is equal to Z5. This results in Z4. If no such element exists then ! 
go \ toQ 

. .  , 1 :  

. If thk'Tiont element  of Z4 is equal to the back element, then set R positive Add Zet 
L 

to the list 6 (if this is still empty,  then Z4 represents ths frst  element). Go to f R 
That element of the pair Z4 which is not equal to Z,, results in z6. 

Ifm element which is equal to Z6 exists in the list Z2, then Z7 becomes positive; L 

otherwise it is negative. -. 

;r 

If Z7 is positive, then 
Rg becomes positive 
and Z4 supplemented by e0 results in the  next element of -%. 
If Z7 is negative, then add Zg to the list Z2 

If z8 is positive then increase el  by 1 
F 

It is a necessary condition  for R,, that z8 is  negative 

If zs is negative, then add z6 to the  list Z3. F 
f 

Add Z4 to the list Z1 t 
Go back to@ 

The pair of values eo, el  results in the  next element of R2 

Supplement the elements of the list Z1 by eo and add thep(To the list Zl0 W* 
The remaining list of Z, , without  the elements contained in zl, fthe new hst Z, 

Increase eo by 1 i 
Go back to 4 

It is a necessary condition  for R,, that el is equal to 1. 

Zl0 results in R1 

9 
' d, 
* 
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1 10- 1 0-1 6 - 2 - 8 - 4 0 R o  z4 ' 9-1 

3 12  3-3 6 '11 '4 1 
2 11  6-7 R2 5 

4 13 1-2 
5 14 - 5-6 
6 7-6  
7 3-4 
8 1-4 
9 . 1-3 

' 15 ' I ~ -0-1 , 18  0-1 
16 - 6-7 .. 

. ., , -'. 

%'. . 
17 1 7a  3-3 
18 1-2 
9- :\ 5-6  
7 7-6 , .  

8 
9 

10- 
11 
12 
13 
14 - 

Rs 
R6 €0 4 3 ~ 0  

1 5r 1 

f 
15 1 17a 0 Ro 17+ Z4 , $ 

6 f !  
i 

1 2  5 7; 1 

3 7 
4 I "  t 

5 
6 €6' ! 

L 
C 

3-3 
1-2 
5-6 
7-6 
3-4 
1-4 

3 
4 8 13 - 

5 
6 

f 
€ 0 ' 0  

1-3 1 

I 
15 0-1 0-1  15 2 0 Ro 17+ z4 1 4  
16  6-7  18  1-2 1 2  5 
17  17a  3-3  17a 2 ' 6   1 1 4  
18  1-2 3 7 12 - 
9 5-6 4 8 13 - 

10- 
11 
14 - 

7 4  
3 4  
1-4 
1-3 

15  14 - 
16- 
17 1 7a 
18 
9 

10 
11 
12 
13 

0-1 
6-7 
3-3 
1-2 
5-6 
7-6 
3-4 
1-4 
1-3 

0-1 
1-2 

18 1 4  

2 0. Ro 17+ Z4 1-3 
15 4 1 2  5 1 

2 6 11 3 
17a 4 3 7 12 - 

4 8 13 - 

5 
6 €0 0 

1 1 

I 
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OP. zO z l  

15 0- 1 0- 1 
16 - 6-7  1-2 
17  17a 3-3 1 -4  
18 1-2 18 1-3 
9- 5-6 

1 . 4  
* * ,  . 4-3 ' .  \ 

-1. .' 

8  14 0- 1 0- 1 
9- 6-7  1-2 
7 3+3 1 - 4  
8 <l;2  1-3 
9 5-6 . .  

10- 7-6 *,. 

11 3-4 L . '.. 

12 1 - 4  
13 1-3 

.. 

* .  . , *.& 

15 
16 
17 
1 7a 
18 
9 

10 
9- 

0- 1 0- 1 
'6-7 1-2 
3  -3 1 4  
1-2  1  -3 
5-6 18 3 -4  
7 -6  
3 - 4  
1-4 
1-3 

7  21  6-7  0-1  20 
8 5-6  1-2 
9- 7-6 1 - 4  
7- 1-3 

19 3 - 4  
20 
21 
22 

4 
5 
7 
8 
9 

. 10- 
11 
14 - 

6-7  6 - 
5-6 
7-6  

j-t - 

t 9 2 0 Ro 17 t 24 , I 

4 1 2   7 ' 2  

. .  
! ^ i  

4 3  ' *  '''T f ; 15 3  2 6 I. 

17a  3  4 s' 1 

; , ,  
5 . .  

6 €0 10 

d :  
? 

1 ;* 1 1 
1 . '  

8 -  0 Ro 17 - 24 1 9 i  3-4  
1 2  5 7 i  4 
2  6  3 
4 3  7 1; - T  
3 4  8 $3 + ,. 

t 
5 
6 

1 
E0 i 0 

1 
1  i16 2 

15 3 0 Ro - 24 - *  9 3-3 
1 2  

4 3  10 + . 7  
3 4  10 3-3 8 

f 

2 6 " 

5 
6 €0 0 

1 '  2 t  
0- l,o 8 -_ 0 Ro -24 

1-4,o 2  6 
1-2.0 1 2  19 0.2 5 + I  7 3  

1-3,0 4 3   + 7  
1 4 , o  3 4  3-3 8 I 

5 
6 €0 2 2 '  1 

1 
1 

0-1 ,o 8 -  4 6  Ro -24 9  6-7 
1  -2,o  2 0,2 5 7 6  
14;o 6  11 7 
1-3,0  3 i- 7 1 2 -  
34 ,O  4  3-3 8 113: - 

5 
6 €0 1 

1 q 5  1 
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15 13 6-7 '* 6-7 0-1,0 
16- 14 5-6 18 5 - 6  I-2,0 15 5 

2'. . 
7 6 Ro - 34 \ g .7-; 

7  2  0,2 5i; 6 
7-6 17-  15-  1-4,o 17a 5 

17a 16 ' & 1-3 ,O 3 + I :1 tt 7 18 i 7 - ,  . 3-4,O 
4 3-3 8 13 i 

9 1 7a . .  -. f 

10- 
11 
12 

18 
9- 
7 
8 
9- 

7 
8 
9- 
7- 

19 
20 
21 - 
4- 
23- 
24 

6-7 6-7  0-1,0 8 -  
5-6 5-6 1-2,0 
7 - 6  18. 7 - 6  1-4,O 

1-3 ,O 
34,O 

6-7 6-7,  0-1,0 8 -  
5-6 5 - 6  1-2,0 
7-6  7-6 1-4,o 

1-3,0 
3-4,O 

20 6-7,l 
20 '5-6,1 
20 7-6 , l  

Z 
5 1 4 +  ; 
6 14 7-6,l EI$ 1 

1 16 2 
F: 

6 R o  - i;r 

3 + . I  
4 3-3 8 

f 

5 + L  

6 7-6,l E& 

6  RO - 
7 R2 0,2 7 5  
5 9  1,2 

R 3 +  
R4 3-3 

1 
R5 + €0 f 22 2 

R6 7-6 , l  1 2 
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I @P. 
. 

.---_ .-_. . __ 
Z 

1 0-1 
6--7 
3-3 
1-2 
5-6 
7 4  
3-4 

1 4  
% 1-3 

0-1 
' 6-7 

3-3 
1 -2 
5-6 
7-6 
3-4 
1 4  
1-3 

0-1 
. 6-7 

3-3 
1 -2 
5-6 
7-6 
3-4 
1-4 
1 -3 

0-1 - 6-7 
3-3 
1-2 
5-6 
7-6 
3-4 
1-4 
1-3 

0-1 
6-7 

t ,  3-3 , - 4-2. 
5-6 
7-6 
3-4 
1-4 
1-3 

-r 

@ 0- 

0- 

0- 
@ 1-: 

0-1 
1 -: 

@ 1-4 

I .  

0 0  
1 

0 
1 

' 0  

1 
@J2 

' '0 
1 
2' 

. ,  . . .  

_ _  
1-4 

1 
8 4  

@ -  
43- 

.. 0 
' 1  

.-_.... ..-L. 
1-3 
1 

Q 3  
@ -  
@ -  

0 
1 

- 
5 6 7 

. .  

4 

2 !('. 

'o----Q==--o 

$ 5  6 7 '  

4 

2 

o-- 
5 6 7 
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z3 
-I_ 

2 

P- 

o- 1 
6-7 
3-3 
1-2 
5 4  
7-4 
3-4 
1-4 
1 -3 

--- 
0- 1 
6-7 
3 -3 
1-2 
5-6 
7-6 
3 4  
1 - 4  
1-3 

0- 1 
6-7 
3 -3 
1-2 
5 - 6  
7-6 
3 4  
1-4 
1-3 

9 6-7 . 
' 5-6 
7-6 

6-7 
5-6 

i; 7-6 
- ** 

7 7 
-. 21 

0- 
1- 
1- 

@ 1-: 

--- 
0- 
1-. 
1a 
1-1 

z10 
- 

. 

B 0-l,o 
1-2.0 
1-4.0 
1 -3 ,O 
1 -4,o 

- 
0- 1 ,o 
1 -2.0 
1 -4,0 
1-3.0 
3-4.0 

> 

Z P  

-I 

Ro 
2 

:I 3 
4 

5 
6 

Ro 
2 

-. 
3 
4 

5 
6 

- 
Ro 
2 

3 
4 

5 
6 

- 
Ro 
2 

... . .. 

3 
4 

- 
Ro 
2 1  

3 
4 

5 

- 
69 

5 
6 
7 
8 

€0 
1 
- 
@ 
5 
6 
7 
8 

€0 
1 
- 
23 

S 
6 
7 
8 

€0 
1 
- 
B i  

Y7 

5 
6 

8 

, 

7 '. 2 

1 0  
1 

(3 3- 

8 3  
0 -  
8 +  

0- 4 

0 
@ 2  

0 
1. 
2 
4 

( 5 3 3  

0 
1 
2 
4 
3 

0- I 
1 -: 
l--L 
1 -2 

B 3 4  

@ 3-: 

0. 
2 

0-1 
1-2 
1-4 
1-3 
3-4 

@ -  

-W 

0 
1 
2 
4 
3 

5 
6 

3 6  

0 3  

€0 1 

101 
I I 

J" 
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I 
-6 

. .  

6-7 
5-6 
7-6 

, , # - ' ; ,  . , .  

. .  . .  
_Ci 

6-7 
5 - 6  
7-6 

4 

6-7 
5-6  
7-6 

6-7 ' 

5-6 
7-6 

@ 6-7 &l,O 
1 -2,o 
1-4,o 
I -3 ,O 
3-4,d 

64-7 . 0-1,O 

@ 5-6'  1-2.0 
1 -4,0 
1 -3,O 

. ' 3-4,O 
. ,  

, .  

6-7 0-1,O 
5 - 6  1-z,o 

@ 7-6 1 4 , o  
i. . ,~ " 13,O 
3 4 0  

C 

i 
I 

i 

- 
3.2 

+ I  

5-3 

t 

7-6,1 

, 

6-7 0-1.0 
5-6 1-2,o 
7 - 6  1 4 . 0  

1 -3 ,O 
3 4 , o  

' @ 6-7,l 
@ 5 4 , l  
@ 7-6,1 

2 

i 
I 
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Lists of input - and  result  -values : 

- - 

Ro - 
- 

- 
0- 1 R1 = 
6-7 
3-3 
1-2 
5-6 
7 - 6  - 
33-4 '. 

1 4 .  .'.\ ..I .'. . 
1-3 -- .. 

R2 = @:3 . .  

R3 = t 

Rq = 3-3 

- 
0-1 ,o 
1-2,0 
1-4,o 
1 -3,O 
3 4 , O  
6-7,l 
5 4 . 1  

- 7-41 

Explanation of the  results : 

The list of pairs is not univocally coherent ( Ro ) 

The list  consists of the following coherent groups ( R1 ) 

Group 0 : 0-1 [g] Group 1 : 6-7 [:=I 

I 
I 
? 

Group 0 and  Group 1 are of the  degree of determination 2 ( R2 ) . 
A symmetrical pair ( R3 ) exists  there, namely 3-3 . 
A duplicate pair ( R4 ) exists there, namely 7 - 6  ( Rs ) . 

i 
f 
i 

I 

t. 

C 
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A 

B 

C 

E 

G 

rj 

j 
K 
L 

m l  n 
N 

P 

R 

S 

1 

U 

2 

Appendix to chapters 1 and 2 

1) Legend of the  letters 

Number of Components of Data 

Number of Elements of a  List - - 1 

Program  -Symbol 

Result - Value 

Structure 

Type of Data 

Subprogram 

Variable 

Repetitive  Program 

Bound Variables,  also  General  Variables 

Intermediate Value 

GG 

U Symbol for Variable Types of Data - -  5 2  
. 6'4 Currently Varying  Auxiliary  Value of a Program E 

K Variable Index for Components . 

X '' The last " 
I 

P " The Kext " 

i 
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Variable  Program Symbol 5s 

Variable Structure Symbol 

Product 

,Sum 

'- . 
', . \. . . .  . 

%'. . 2 ) Legend of tlle Symbols .. 
General Symbol for Vacant Position -- '. &- 
Disjunction * 

Conjunction . 

Negation 

Implication : ' . .2 
Disvalence 

Equivalence 

:\ 

. .  
' .  L 
* .  I 

In the sense of 

the calculus of 

propositions 

Conditional Program-Symbol ___ 

multiple Operations for chains of propositions. ' 

L 

. +  Addition , 

Subtraction 

Mul tiplication 

Division 

Squareroot 

Equal-Symbol 2 

Identity-Symbo! 

" Results in " Symbol ---. - 

Same composition 

Definition Symbol 

Less than 

Greater than 

Less or equal 

Greater or Equal 

\ 
In  the sense of 

arithnletics 

Q 

=Df 
< 
> 

i 
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I 

Ca 

Fin 

Fpos 

Ger 

G2 

Lz 
M aj 

M n  
Min 

Nb 

Nr 

Ord 0 

Ord 1 

- 143 -- ' I 
I 
? 

Indifferente 

Symbol  for a Set of Programs 

Empty List 

Variable Operation Symbol 

" 1s Element of '* 

Union of Sets - 
Section. of  .Sets 1 ,  
Disjunction b e h e n t  of 

Conjunction Element of 

Brackets 6- . 9 

. .-., 

.- 

;r 

Symbol  for Separation of Expressions 

Symbol  for Separatiqd. of Cbmponents +. -- .. -I . .' 

Shifting of Lines 
. . * 2 

Those Which ( without  repetition ) 

Those \vhich ( with repetition j 

That  one Which 

Statement  Symbol 

< .  

General  Negation E64  1 
General Conjunction . 844 3 

General  Disjunction . ' d3 1 
F 

F 
3 ) Legend of Ge'nerally  Valid Function Symbols t 

Field  of  a Relation ( List of Pairs ) . . -  . .  . -- / t ' q  J? 
End-Symbol 

52 - 

Positive  Value of a Function 

Even Number 

Integer  Number 

Concatenation of  Lists etc. 

The Greater One . . 

The Greatest 

The Lesser One, the Smallzst 

Back  Area of a Relation 

Numbering of the Elements of a List 

Ordering  of  a  Pair 

Ordering of a  List __-. . .. 

C 
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? 

i 

. ' C  
_ _  .. . to Ord 6 Ordering  of  a  List of Pairs . .  

Positive . - 454 - 3 t ! E  
Subprogram 53, - h 

1 4  
Horizontal Cornposi tion i 

Result of a Subprogram 

Sign of a Nurnber 

Column  .of a. List of Pairs '. . 
%'. . . *  \ 

.. 
Partial List' 

Transfer 

Front Area of i' Relation 
, .  1 

h ) Legend of General Structure Symbols 
. .  

* .  I 

Yes-No-Value . 
~ - . . .2 

* *_ 

Sl.n=nXSo  Senes of  n  Yes  -No-Values 

s2=2xo Pair of Data 

S3=mXo List 

S4=n1X 20 List of Pairs 

AOCC . i  
i 

At3 General Notation  for Nurnbers 

A9 Positive Integer  Nomber Chapter 3, m - 2  
A l 0  Integer Number 

A l 2  Rational Nurnber 

A l 3  Complex Number 

5 ) Order of Priority of the Symbols in  Compliance with' their Range 

I * " .  
4- 
5 + A V = + x  

< - :  
> 
E 

+ stronger binding 

J 

I 

C 
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I. Stnlctures and Types of Nurnbers 

11. 1,nrltrodum . 
Survey of Progrqs  with Numbers . -  

I .  . *'. . .- 
1) Propositions on Nurnbers P8.0 to P8.4 

2) Operations with One Operand 
;\ P8.8 to P8.30 I 

3) Propositions on Pairs bf Numbers 
.., P8.48 to P8.50 -- ,. / ! W i  
. . .' t 

4) Operations with TWQ 'bperaR&. 
P8.64'to ?8.80 

111. Programs with.Positive Integer Binary Numbers . ---_ ~. - . ... -. .... 

( A9.2 ) 
1) Propositions on Single Numbers 1 

P9.2 to P9.4 45z 
P9.8 to P9.30 .-- ,- (Iss' 2) Operations with One Operand 

3) Propositions on Pairs of Numbers 
P9.80, P9.48 to P9.50 . -.. . . 

4) Operations with.Two Operands 
P9.64 to P9.72 

.I 

IV. Programs with Positive and Negative Integer Binary Numbers . - -.- - . .____ 
. .  i/Q 

Representation by Complement ( A10.2.0 ) 
P10.0 - ?!0.72 f?G '1 

V. Operations with Positive Integer Decimal Numbzrs 
- .  - . ~  /q 

1) Structure of the Numbers 

2) Operations with Decilnal Numbers ~ - . . .  . - .  ,, ,'/d 6 
.. 4 k G  

W. T& ~ e m i - ~ o g a ~ i t l m i c  Representation -_----. . .---.__ 

( e.g. in the Computer Z ) 
4 

1 1) Structure of the Nunlbers W, 
2) Operations with AAl . .  CL 

( Omitted in the English Version ) . .  

L 

t 

t 
t 

.. . 
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I. Structures and Types  of  Numbers 

F 

The structures and tyyes of numbers  in  arithmetic Operations are of a great variety.*Withofit - , 4 
considering their representation in detail , the followinp, types of numbers can be distinguished '' i 

form the start : f b  
1) Scalars 

8 :  

: 
a) Integer positive Number ( natural number ) I 

b) integer' p o s i h ,  . -. oi negative number 

C) rational hositive nuAber 

d) rational positive  or  negative number 

The investigation of irrational numbers is superfluous, since no  structure allows them to be , I ;  t 
exactly. They  must always be approxirnated by rational numbers. 

.. 

2) Composite Values : *., 
. .  .- 

& t 
a)  Complex numbers . . -+ 

b) Vectors C 
All these types of numbers can be represented in  very different ways. For instance, the following $ 
number Systems can be distinguished : 

1) Homogenuous  number Systems , e.g. : i 
a)  Binary  System 

b) Decimal  System 

. *: '.\ 
* *- i '  

I 

.. 

2) Non-homogeneous Systems , e.g. t 

a) Division of the circle into grades, minutes , and  scconds 

b) Division  of the  time into hours,  minutes , and  seconds t 

C) British measurement of distances ( mile, yard, inch ) 

d) Monetary  Systems ( Standards ) , e.g. the British  System. 

Further, after the  type of numbers  and the number  system are established, different ways of 
representation  can be  applied. 

1) The identification of  positive and negative numbers  can be  accomplished I 
a) by  signs 

b) by  complement  representation i 
2) To specify the Order of magnitude , power  factors can  be added to  numbers ( half-logarithmic 

representation ) 

3) Representation by logarithms 

4) Representation by fractions ( 2 ) 

Finally, numbers  may be supplemented by  Special data which specify those cases,  which cannot 
be represented by the normal  representation of the number e.g. :' 

b 

I 

. .  

F 
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; , .  

. I  

? 

1)  Specification of " = " or '' vcry  grcat " 

( see chapter IV ) 

Out of  this multitude of possibilities types of numbcrs of  general.and  of Special  meaning can be d $  

developed. ' C 
Of  general meaniig are e.g. the basic  types of numbers ( positive  integer numbers etc. ) '  1 
Of  Special importarke  xre. , e.g. t@ numbers for  the division of the circle, or monetary Systems. 

1 :  

Amounts  in Mark-currency  for  instance  are  represented by decimal numbers, with two. digits r 1  
after  the Point.  Of further  specid importance are the number-Systems in a Special  Computer ( e.g. C 
in the 24 ) . I,, 
First, only progranls for -number-Systems of general importance are  developed. 

1 

. I  . .  
I 

. I  5 
. .  *. 1 

The following types of c!aia.aare''defined : 
' . , " J  

A8 Number  in the gqieral meaning 
A9 Positive integer  number 
A l 0  Positive or negative  integer number B 
A l l  Rational positive number 
A l 2  Rational positive or negative number 
A l 3  Complex number 

These  general  Symbols may be substituted in different  representations  by various  structur::  Symbols, 
e.g. those for decimal numbers, or for binary numbers. f 

tP- 
It is not possible , however, to mention all possible struqfipes, because of their  multitude ( the set  1 ' 
of possible  number-Systems is infinite ) . I 

Consequently, at any  time , only  the immediately required strucutres  are specially  defined. The 
following  Special forms of the types of numbers listed  above  are  established : ' !  1 
A9.2 Positive  integer binary number 

A9.10  Positive  integer  decimal number 

n 

'- t 
. .  . -  - -.--- .- .. ~ - . -  . ... 

A10.2 Integer positive or negative  binary number ( kind of specification of negative numbers I 
not fmed ) f 

1 
As A10.2 , but by complement in representation 

1 According to A10.2.0 , A10.2.1 5 

I 

i 

i 
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i 

1 ,  

I 

A9.2 ' = S1.n 

A9.10 = nXS1.4 ( the single  decimal digits are represented by S1.4 C 

A10.2.0 . = S1.n *! 4 4 :  i 
.. 4 - .  

A10.2.1 ' = ( So, S1.n ) Ko = sign 
K1 numbcr 

AlO.EO.0. .- = nXS1.4 

A1O.lO.l 'A-* .( So, A8.10 ) 
' .  . '. - . .  \ 

Al 1.2 = ( Sl.m, S1.n ) Ko = series of digits before thc point I 
b 

K1 series of digits after  the  point .* L 
Al 1.10 = .( 1nXS1.4, nXS1.4 ) Ko , K1 , according to  A10.2 

A 1 2.2.0 = 'f,Sl.m, S1.n ) 
*. e 

A12.2.1 = ~ ( sd,'Prl.0.2 ) i 

. .  1 

* .  \ 
2 .  

L .  "& 

I 
A12.10.0 = ( mXS1.4, nXS1.4 ) 

A12.10.1 = ( So, A1O.10 ) 

Al3 = WA12 

Other  structures are defined ,when required. 

f 

11. Introduction 
F 

As manifold as the types of numbers and their representation, are the programs with numbers. . t 

Programs with numbers mostly correspond to arithmetic Operations. With nearly all types of 
numbers analog Operations  are  possible , e.g. addition. Therfore, the well-known  Operation-Symbols ' 

of arithmetics will  be used here, too. They represent the Symbols of a Set of analog programs. 
The program for  addition  for instance is different, depeding on the  structure  of  the operands. 
The Special program is a  function of this structure. S o  generally, the Operation-Symbol  suffices. 

But a Symbol for  the program-Set  is  assigned to each Operation-Symbol. If necessary, the 
specification of a Special program .of the set can be achieved  by supplementary data  or indices, 
which normally correspond to the structure-Symbol. 

Nevertheless, various programs are  feasible for  the Same structure,. ( e.g. those with or without 
indication of an Overflow ) . 

i 

Various programs n a y  be equivalent or quasi-equivalent Even if the structure  of the operands is 
the Same, in various cases still, different methods of multiplication are  possible ( e.g. first or 
second factor can be  used  as muitipiicator ) . If the resuits are exactly the Same with all these 
Variations of the input  data, then the programs are equivalent. If they differ slightly in accuracy ' 
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then they are  quasi-equivalcnt.  In the latter case it can be assumed that these differentes approach ' ' ', t 
zero when the number of  digits  increase . q 

.. 4 - .  t; 
The  complete program for an Operation sometimes  contains  supplementary infonation, e.g.  d1e ', 4 
identication of  an  overflow,  besides the computation of the proper result ( e.g. the  sum ) In such cases 
the specification of the values must be performed by  program-symbols or result -symbols ( for 4 

instance R8.10 ) . - 
The real arithctG'operations only reprcsent in this  case a reduced Part of the total program. Such i 
rcductions are"alSo pasiible with regard to the number of  tlle  digits  of the result, for instance . I ?  

In the following section programs  of homogeneous structure arc developcd. In  those  programs  only i 

instance : a > b ):,: 

i 

. .. . - _  - i k  

.. . ' 1  1 

data  or numbers of the Same structure appear.'  Neverthelcss , the results can be propositions ( for 
i 

. .  
The following groups are  'distinguished : 

1) Propositions  on single riqmbep . , "\ 
2) Operations  with singlk numbers= 

3) Propositions  on Pairs of nurnbers 

L .  

L 

C .  e 
t 
P 

i 
L 
i 

4) Operations  with pairs of  numbers 5 
. C  

5 )  Operations  with Sets of  numbers t 
This grouping  does not correspond to a  systematic logical development  of  one Operation into another, 
In some  programs other groupings  are  used , wluch are defined  only later. 

First, we refrain from an axiomatic  representation here. The well-known  Systems  of axioms like , 
f 

those of Peano  represent implicit solutions of numbers  and their Operations,  which  may be realized 
by different structures and  programs.  In Order to develop the rules  of  Special  number-Systems form 
those general axicms. the introduction of additional axioms would be necessary. 

The  numbering of the programs is generally related to  the group 8, ( e.g.  P8.3 ) . The figure 8 
can be replaced  by the numbers 8, 10, 11, 12 , 13 on the types of the  numbers used. 

f 

I .  
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U 

Survey of the  progranls with 

1) Propositions on numbers 

numbers 
1 

-.. 4. ~ I 
Program Operation Marginal Remarks Paie 
identification sym bol  values 1 

p8.0 poy; ( V )  R ( V ) =$ R V. is positive or equal to zero . 
*', Q ' .  \ 0 0 

*'. 8 .. .. 8 0 

P8.1 I* V, is an integer number 

. .  Y 
C -  i' 

2 i 
46 P8.2 Ger (V 3 * .. . V. is an even number ' i  

0 

8 

P8.3 V =  0 
0 

a 

P8.4 I b  
, V. is an integer power of 2 

I 

In stead of the program-Symbol P8.0 we  have  beginning with Page  'lL'rthe  Special program-symbol). 
P9.0 

t 

, 

t 

t 
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J . '  

? 

r j' j 2) Operations with One Opcrand 

P8.10 

P8.11 

L 

f 

C 
44: P8.12 V X 10* R 

0 0 

a 8 

V X L * R  
0 l0 0 

8  8 

P8.13 

V2 * R 
0 0 

8  8 

P8.16 

1 :  V * R  
0 0  

8 8  

P8.17 

I 
f i  * R  

8 a 
0 0 

P8.18 

?/T; * R  

a 8 
0 0 

P8.19 

i 
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I53 -. 

Program 
identification 

P8.22 
V 
A 

P8.23 
V 

P8.24 
V 
A 

P8.25 
- V  

A 

Operation 
Symbol 

hhrginal Re lnarks 
values 

V X (  - 1 ) a R  R( V )  * R  
0 0 '  0 0 

8 8 8 8 

P8.26 

P8.27 

P8.28 

P8.29 

P8.30 

U 

Inversion of sign .-- 

: : L  
Absolute value - 6  r 

I ?  

V > O + R = + l  - 1  
0 0 

V < O + R = - l  
0 0 

L 

V > O + R = V  C '  i( 

0 0 0  1 

V < O + R = O  i 

- V  

0 0 i 
P V ' t W k  

'4, 1/ 
-Inmw-of number of digits d3;- 

Convelsion to even number - 1.. 
of digits 

Formation of the next lower -f-- 
integer number 

Formation of the next greater --f 

integer number 

Formation of the next even -. 

number 

k 

F 1 

I 
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3) Propositions on pairs oi  numbers 

Program Operation 
identification sym bol 

Marginal 
values 

P8.48 V =  V 
V 0 1  
A 8 8  

R (   V , V )   * R  
0 1  0 

8 8  0 

.. 
P8.50 V G V  

8 :*, 8 
V 0 1  LL 

, .  . 
4) Operations  with two operahds *. 1 

b 
% 

' :\ 
* .  % 

J 

V +  V*..,"-.- R (   V , V )  * (  R , R )  R1signal: 

8 8 8  8 8   8 0  C 

.\ ,{ i-2 
0 1 0 '  0 1  0 1  increase of digit Position t, 

R 

P8.64 
V 
A 

P8.65 
V 
A 

P8.66 
V 
A 

P8.67 
V 
A 

P8.68 
V 
A 

P8.69 
V 
A 

P8.70 
V 
A 

P8.72 

V - V * R  
0 1 0 .  

8 8 8  

R, " result less tllan 
zero 

V - V * R  
1 0 0  

8 8 8  

bb 

e. 
V X V * R  
0 1 0  
8 8 8  

Ri = Signal 
increase of digit 
positions . .  - 

V :   V * R  
0 1 0  
8 8 8  

hlaj ( V , V  )* R 
0 1  0 

R ( V , V  ) * R 

8 8  8 8 8  .8 
0 1  0 

Min ( V, V ) * R 6s 

0 1  0 

8 8  8 

The  greater of two 
values 

The  lesser of two 464 
values 

V X  €3: * R   I R (   V , V )   * R  
0 

0 1  
B = Base of the number- 

System 
8 8  
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3 

111. Progranx  with  Positive  Jnteger  Binary  Numbcrs ( A9.2 ) 

1)  Propositions on simple  numbers 

R (  V )  = + R  
V 0 0 

S 1.n ,o 

p 9 . 3 v = o  I -  A G (  V )  * R  
A9.2 o 0 0 

1.n o 

p9.4 integer power of 2 - R1.9 ( V ) * R 
0 

2) Operations with one'Operand 

- P9.8 Counting  forward 

A9.2 R = Signal ,, increase of digit Positions " 
1 

V I R( T' " (  
S I  1 .n 

+ * z  
V 0 

K 
S 0 

V 
K 
S 

Z R .  
0 0  

n+l 
0 0  

0 

1 .n+l 

Z * R  
0 1  

0 0  

9 R )  
1 
0 

0 0  

I 

Z/+,'Z , .  * . R 
0 ' 1  0 

i 

, G  

0 0 0  

0 1 0  

0 0 0  

? 

B 

t 

I 
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P9.9. Counting  backward 

A9.2 R = Signal ,, Change of sign " . 
I '  

V 
K 
S 0 I 0 0  

Z = + R  A 

V 0  1 I .  

s o  0 

P9.10 Dublication. . , "% 

. .  
\ 

* .  ' I 

* *_ 

A9.10 ( Marginal  values  and ' 

- * R  W1 ( n )  
V 0 

K 0 

S 0 

Z - Z y R  
0 1 '  0 

i 
I 0  0 0 

R as for P9.3 ) 
1 

z V z * Z '  
0 1 0  

0 0 0 .  

P9.11 Bisection , 

A9.2 ( Mariginal  values as for P9.9 ) 

R = Signal ,, remainder " 
1 

- *  R 
V 

0 0  0 0 0 S 
0 n-1 K 

0 0 

P9.12 X 10 . 
A9.2 R (  V )  * R  9 R )  

V 
1.n l .nt4 0 S 
0 0 ' 1  

hnplicit representation 

( V X 2 X 2 t V )   X 2 " R  
0 0 0 

1 

R = sign ,, increase of digit Position " 
1 

I 

C 
Konrad Zuse Internet Archive http://zuse.zib.de

License: CC-BY-NC-SA



157 I- 

R9.10 ( V ) =$ ( Z 
V 0  0 0 ' Y ' /  Y V R  1 
S 1.n . 1 .n+l 0 I 0  0 

V2 * R  
I .  1 

. .  

R = Signal ,, increase of digit Position " , 
1 

' *  
R9.67 ( V , V )  * (  R , R )  

V 

P9.18 Squareroot r 

9.2 9.2 9.2 o A 
0 0 0 1 F 

e 
Tlle development of this program is amitted in the English Version of the Plankalkuel. . i f 
See Gennan Version . 

P9.26 Extension of t h e  number of digits 
, .  

A9.2 

1.n la+l  S 
0 0 V 

R (  V )  * R  

V 
n+ 1 K 
0 

e s  0 0 0  

Example : V, = LL 

Ro = OLL 

The value of the  number is not chmged. 
I 
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U ;  j 

3) Propositions on pairs of numbers . *  ' .  
i 

I ' ? :  ! t  i 

In all programs  with two or  more  numbers as input - values it is presupposed that the number of f 
digits is the Same with all numbers. I f  this is not the case, then  the  number with the  sxkller  rimb,er 4 
of digits must be transformcd to that of the greater one  by repeated application of the rule P9.26.' i 

P9.48.  These  programs  have  been anticipated  by the programs  P1.68, 6 :  

* 

t 
P9.49 P1.72,aph P1.74 

\. . : .'. . 
?' 

' ?  

P9.50 \. i t  
i 
r 

4) Operations  with.two  operands 
;r 1 '  t 

I .  

With  regard to the  number of digits see  page 
C .  i; 

i 
4 

.L . ,' * .  I 
f 

P9.64 

A9.2 d .  
* , .* 

V ' t V  * R  
V 0  1 0 

S I n  1.n . l.n+l 

R1 = signal " increase number of digits " 

-* z 

0 0 0 0   0 0   0 0  0 0 0  S 
i i f ' i  i i i i t l i  i i i  K 
0 0 0 1  1 0   0 1  o l l  0 V 

( V A V ) ~ ( Z A Z ) * Z  z + Z  * R  W(n) V + V * z  

,, i 
F 

z *  R z * R  t 
V o o o l '  
K n n n  
s o o o o  

. .  
P9.65 - 
A9.2 

V - V  * R  
V 0  1 0 

S 1.n  1.n  1.n 

R1 = signal " result negative ' 
In this case R is representing a supplement 

0 

C 
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1 :;9 .... b 

P9.66 ;; 
A9.2 

' .  
' ;  

V - V  = R  R as R9.65 , 

V 1  0 0 1 1 1 . ;  
t- 

K I 1.n ' 1.n 1.11 '. X . '  4 * .  

' I ,: 
, 4  

As P9.65 , however, V exchangcd with .V 
1 0 

- P9.67 hlultiplicition 

b A9.2 1; $6 generd case of the  stnlctures , V as  well as V have to be transfomed  to fl1e , $ . .  .'. . 0 1 t same number of. digits X- 

s v l  12" l.m l.n 1 '  t 

The  normal case$,tllen'reads : C -  F r 
t 

! \  
V x v  * R  J 

0 .  1 0 

I .  

a 
* .  I 

V X -V- ' *&,- R = - S i g n a l  " Overflow " ; 
V 0  1 0 1 f 
S 1.n 1.n 1.n 0 i 

C 
- 4  

lmplicit representation of R 
0 

ZUb ( V, V ) 2i * R Ub ( ) See chapter 2, Page 97 / i 
t r i  
K 

Explicit form 

i 

0 

1 0  0 k' 
f 'i 

F 
V 

I O * L ,  I Y ;  f . I  
* z  z X 2 * z  

V 1 .o . .- 0 - . - .. 1. . ._ . . + F  
K -- - . ... . .- - -..-. -.-- .- _. --_ . .. . . .. . _. i 

I 
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P9.67 with Signal 

I 

J 

I 
i 
? 

V '  5 

j i  
R ( V   * V   ) * ( R  , R )  , . > :  f 

1 0 1 l f  
z 

S 1.n 1.n 1.n o *. 

o * z  V * z  ' 4 :  . 4- .. h 

V 
1.n  1.n  1.n S 

1 0 1  
' *  i 

k ) #  

r 
z ,V)* ( z , V  2 ) )  R8.10( z )=+( z , V Z ~  

V 
\. i K 

- 0  0 0 '  0 2 1 1 , 2  !,I 'J 
;I 

S 1 .n 1.n o 1.n o 1.n 1.n r 4  -J 

F 
z * R I;. z =$ R 

V 0  0 . .  2 .  1 
S 1.n  1.n o o . . 

t 

P9.68 Division . , nz - *_ i 

V : V * R  R = Remainder i 

L' i! 

f 

V 0  1 0  1 - +  E 

I 

& - .  I 
L .  

- 

S Ln 1.n  1.n 0 

Implicit  rcpresentation 

: I \  

Maxlx.(  V X x 9 V )  * R  ( V X R * O )  * R  
\ !  
.- 1 0 0 I 1 0  1 

Explicit form 

V * z , l   V - 2  , I - 1  * E  I o * z  
0 0 1 1  3 

W Z > Z ' Z X 2 * Z  

I 

. .  

[ o  l . [ l  1 I E + l"'u 

W z - z = + z  z > o : , z * z + * z  
V I K [. O '  :I1 0 1 2 1 2  

e 
t 

! I  
E 

i 
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P9.69 

A9.2 

P9.70 

A9.2 

P9.72 

A9.2 

Legend of the values : 

V, = Dividend 

V1 = Divisor 

Ro = V, : V1 

R1 = " Remainder " 

Zo = Current  remainder of the  dividend 

z1 = avisor X $  . 

Z3 '= Cornpiling  value Öf the  result 

Maj ( % ,  I .  V )  =$ R 
'0 1 . .  0 

1.n 1.n . ., 1.n 
' n * .  \ 

z ' $ (  V * R )  
1 0  

Min ( V ,   V )  * R  
0 1  0 

1.n 1.n 1.n 

V X 2  l . - R  
V 

0 

9.2 

Gorrect  representation 

V X 2 7 V   * R  
V 0  1 0 

S 9.2 9.2 9.2 

I 

e 
f I 

C 
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1V. Programs with  Positive  and  Negative  Integer  Binary  Numbers 

Representation by  complement A10.2.0 

Only  examples are mentioned. 

P10.0 

Pos(V ) =) R 
- 
V = * R  

V 

s o  0 .. 

V 0  0 0 . 0  

S n-1 K 1.n. \. .o . *  
*'. . 

P10.2 Ger (V? I . P9.2 
0 . . I .  as 

p10.3 vo = 0 1 -  .p9.3 
t 

- .  R 
* .  I 

. . .  . . , X  . . 
* *_ 

P10.4 " V, is an  integer power of 2 

V 

S 0 

Examplcs n = 3 

000 = 0 
OLO = +2 
LLO = -2 
L00 = -4 

V + 1 =* R10.8 , R10.8 as R9.8 
0 0 0 0 

K I n-1 n 

P10.9 

I 
L 

t 

i 
'. 

q- 

e 
i 

! ! !  

f 

I ,.4 
1- 

K I n-1 n 0 
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i 

0 0 1 

P10.22 , 

.. \, . 
V X ( ' - 1  : 3 . .  R10.8 ( 8 V ) 3 ( R , R ) 

V 0  
. .. 

0 0 1 
S 1 .n 1.n o 

P10.24 

V * R  

n-1 n-1 K 
0 0  0 V 0  

V * R  

V 3 R10.8 ( .&( V ) )  =* ( R , R )  
0 0 0 0 1 
n- 1 
0 1 .n 1.n o 

Fpos ( V ) . Pos ( V ) . + (   V * R )  
0 0 0 0  

i -  
1 POS ( V )  ? (  0 = * R )  

0 0 

P u  Increase of the number of digits by 1 

R (  V ) * R  
V 

1 .n l.n+l . s  
0 0 

V 
K 
S 

W l ( n )  V *  R 

[ P P] 

V S R  

E-1 n 0 

0 0 , o  0 

I 

I 
t 

t f 
\.a 
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* I 1.n 
10.2.0 10.2.0 10.2.0 

S 1.m. 1 .n 0 . 
The number of the digits did not increae. R is tlle Signal specifying that the given  range 

1 
of digits is not sufficient. 

The ecpredion is generdy valid : 
'. ' .  \ 

.- 

. .  
C .  But i  may only be  variqd to the  extent,  that the following is true : 

* .  1 . L .  
o k i   + ' ' ~ . < n  

".\ 

i 

This can be achieved  by the following program : 

V 
K 
S 1 .m 0 1 .m 

The digits of Ro not yet specified by this program can be derived as follows : 

C 

a) If V is greater then  zero then the digits with the indices 0 to V-1 are Set equal 
1 1 

to zero. 

V >  0 S ( W l ( V - 1 ) )  
V 1  1 
K 

Interpretation : '' W-program 1 with the limit V-1 applied to [ ] " . 
Since V can  be greater than n, then W1 must be limited by n-1 in this case. The 

general expression for  the  limitation  of W1 is : 

1 I 
1 f '. 

I 

Min ( V-1 , n-1 ) 
1 

Then the following expression results : 

W l ( M i n ( V , n ) )  -=* R 
' " " ' I  1 [ ;] 1 I 

C 
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I ( ;  
j 

b)  If  V  is  negative , then the digits w i t h  the indices  RnL1 to ' Rn-l+V1 must be , ., i 

set equal to the highest  digit of V, . Bccause if this  digit  Position is occupied by a ! 
one , this means that V, is  negative  and that all  higher unwritten digits mpst tlte.ea F 
also be equal to one. The corresponding expression  reads : '! . I r  i 

1 " ! t 
V < 0 7+ ( W1 ( IVl )) =+R 
1 1 E I  ,-J $ 

8 

i 
Ihre. $00 , 1 V 1 may be greater  than n . Consequerltly, the expression must be 

su$plementGs"fouows ': 
.'. . 1 ' ? V -  

I ,t 6 5 . y  V 
V < O *  
1 

( W l ( M i n ( l V   I t 1 , n ) ) )  
1 i c  

* .  n-1 n-I-i 

Finally 

R can 
1 
n-1 

. .  
, a criterkp for., R has to be  cstablished : C. 

only bec6me  po&ive if V >  0 , and if one  of  the digits of V with the indices 

to n-1-V is different  form V 
1 0 

* .  $ 1  

1 0 

n-1 

( These are the digits  which get  lost by an upwards shift ). 
Then , the following  expression  becomer tlue : 

1 
n-1-i n-1 

C// 
This expression can be combined with the expression on Page ./C +. Thus we obtain  the 
following  program : 

P10.72 
A10.2.0 V 

R( V , V  1 * (  R 9 R )  
0 1 0 1 

A 
S 

10.2.0 10.2.0 10.2.0 
1 .n 1 .m 1 .n 0 

V K 
1 *:I(i+;)-j 

0 < i  t V < n  

V 1  1 0 

K i n-1-i n-1 

V 1  1 
K 

'I 
4 

L 
' 

f 

I 

i 
Konrad Zuse Internet Archive http://zuse.zib.de

License: CC-BY-NC-SA



1 

? 

. .  i 

V. Opcrations with  Positive  Integer  Decimal Numbers , ' .. 

1) Structure of the numbers ¶ f  
3 t 

.. 4- I 
4 

A9.10 = nXS1.4 ' 4  
' I :  i b  i 

The Single components cprrespond to the decimal  digits.  These 'are represented by binary numbers, ' 
with four digits. ? 

. . 0. 0000 

* - .  ; -1 , - OOOL 
. 2 *'- - .ooLo -- 

3 OOLL 
4 OLOO 
Si; OLOL 
6 . -oLLo 
7 .oLLL . 
8 Co00 ,' 
9 - LOor *. 

>'% 
L .  

Examples for decimal numbers : n = 4 

digit 
3 

digit  digit  digit 
2 1 0 

P 
C .  C 

t 
i 
L 

305 = 0000 OOLL 0000 OLOl 
@h = OOOL OLLL  LOOL OOLO 

2) Operations with decimd numbers 
. .  F 

p9164 V t V =IR R1 = 'Signal " Overflow " 
f 

A9.10 V o 1 0 

A 9.10 9.10 9.10 i 1  
R ( V  , V  1 " (  R P R )  

V 
nX1.4  nX1.4  -(n+l)X  1.4 o S 
0 1 0 1 

This sum is produced digit by digit. First  for  each Position the  sum of the digits gSi is i I' 
evaluated form V and V . 
This sum is  a  binary number of 5 digits. If tllere is a carryover form the Position i-1 to the r 

0 1 

Position i, then Z .  must be  increased  by olle. 
0.1 

If the value z. thus compacted is greater then OLOOL (9) , then LoLo (10) must be subtracted 

and a carry-over Z to the Position Z must be effected. 
l.i+l i t  1 

There is no carry-over to the  first Position ( - * Z ) 

0.1 

1 .o I 

i 
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V 
K 
S 

We then  obtain the fol!owing program 

-=$ z 

S v 1  ‘ . * :  

V 
K 
S 

V 
K 
S 

v + V  * z  
0 1 0 

i i 
1.4 1.4 1.5 

z. z OLOLO =$ z 

‘0 ,  : 1 
1.3’” .. .o 

1. 

0 . .  

z e z  + l * z  
0 

0 ’ ’  k . 5  1.5 

‘“I 1.5 

z * l  
0 t 

i 
1.5 

R 
D 

i 
1.4 

.. 4.. 

‘ I  

In this formula the sub-indices  of Z and Z can  be omitted because of the rule  of the 

“ results in ” Symbol.  This formula  can be  varied under different aspeots : 
0 1 

1) Instead of the  subtraction of LoLo (10) an  addition of  tlle complement  can be perfornled. 
The  complement of LoLo is : 

-- .ooLoLo 

.LLoLoL 

t L 

.LLoLLo 

Since the difference Z - LoLo must have a value between 0 and 9 , only the lower 

four digits of the Supplement are relevant, 
Thus we can write 

0 

z +- oLLo* z 
0 0 

2) Instead  of the general operation-symbols  the Special  program identification for the  used 
type  of  numbers and number  of digits can be substituted. In the first case ( V + V ) 

0 1  
represents the  addition of two  binary  numbers  of  four digits, resulting in i . i 

. a binary  number of five digits. The used  program is P9.64 for n = 4 . 
We will call it P9.100 

P9.100 = P9.64 , n = 4 
A9.2 

I 

I 
1 

I 
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1 

? 
4 I I '  3 

The Operation Z + 1 can  be  represented  by R 9.8 '' ( Z ) . . .  
The case Zo + OLLO represents an addition of two binary numbers of  four digits each, t E 
resulting in a numbcr also of  four digits. This is the reduced form of P9;lOO wi@out4-R . E 

This program  will  be indentified bp P9.101. . 

.- 

0 0 0 
' 1 

:: I t 
. o  I 5 4 '* i 

P9.101= P1.100  with R9.100, R9.100,R9.100,R9.100 ) =$ R9.101 . 4 ( 
0 0 0 0 0 . v l  0 'K 1 2 3 i '  \ .  V .'. . 6 : '  

From Z ' wl6ch was'five digifs , the value Z with four digits  is formed whereby the digit Z t 

is ommited . We then obtain  the following  program : s 
0 2 4 :  

.. 

w l ( n )  
V 
K 
S 

V 
K 

V 
K 
S 

. .  
i 

. R9.-l60'(' +.. , V ) =* , z 
0 0 1 0 

i i 

* .  I 

1.5  1.4  1.4 1.5 

-. 1 

1 0  0 0 t 
I 

t 
z 9 R9.8( z ) = * z  i 

+ 
o 1.6  1.5 1.5 . "  

z z OLOLO =) z ( z, z,  z, z ) =+ z 
2 0 1 

0 1  2 3  
0 0 0 0  

f 
1.5 0 0 0 0 0  1.4 

F 
( 9 z 

2 

0 1.4 

OLLO) z 
2 

z = * R  z = * R  
V 
K 

1 1  

' S  0 0  0 0  

In this , another representation for R was Chosen . 
0 
n 

3) Now the Operation R9.8 ( Z ) will be  eliminated. 
0 

( z 2 LOLO) + ( z+l > LOLO ) 
0 0 '  

* R  
0 

i 
1.4 

Which  means, that in the case V t V >  LoLo, there is no influence 
0 1  
i i  

of Z on  the evaluation of Z 
l.i 1 3 1  

I 
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i 

I 
i '  
? 

: : t  
i ¶ I  

6 4 :  
z < LooL+ ( z + 1 ) z LOLO 3 

d t  

i Consequently in  the  case  of V + V < LooL there will  never  be a carry-over Z 

to t.11~ next.position.  i  i i 

To consider  ice-influence of  Z on Z therefore, only tlle  case . Z = LooL is  relevapt. 

( In any  case, there ia s carry-over Z . to the next higher Position i t l  ) . , '': 1, 
1  .i+l 

Further, tlle  following  applies : -. 4 * .  i 
' 4  

0 0 
j b  

1 0 l.i+l I 

. .  \ I ?  

1 .i l.i+l 0 i 
Then the following expression for Z applies : 

1 
R9.106 ( V , V ) =$ z 
0 I -  0' 1 

i .  i 
0 . .  

& * .  I 

( Z 2 OLSiO')' P$,( 2 = OLOOL A Z ) * Z 

0 0 1 .i l.i+l 

d 

1 . '  t 
L 

f 

R9.8 ( Z ) therefore, is not necessary for the evaluation of Z anf  for  the  evaluation o f .  f 
Z it can be combined  with the addition af LLo. 

0 l.it1 

2 I 
First we write : 

z s R9.101 ( z , oooL ) =$ z 
1 .i 2 2 

z ' 3 R9.101 ( z , oLLo ) * z 
1.itl 2 2 

f 

F 
t f 

In t h i s  , Z is altered not  at all , once 01 twice depending on the values  of Z and  Z # 
. '2 1 .i 1.it1' 

Since the two values oooL and  oLLo do  not have a  one in the Same Position  the  two 
W 

. .  Operations in K9.101 can be combined. 

R9.101 ( z , ( z , z 1 2  1 - 1 1  * z  
2 1.i . l.i+l  1 .i+l 2 

In this representation the digits  of the second value  have to be written in reverse sequence. I 
Since z 1  is a' control value, an intermediate value Z = Z  has to be introduced. 

I 

. 3  1.i 

.. . . . . .  

I 

C 
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Thus , the following  program  results : j t  
I 9. 

. ' '  ? P9.64 - - z  t 
1 A9.10 V I f  

, s  0 
L '. 4.. 

' 5  i 
' I ?  

V 

0 0 0 0  o 0 1.4 . 1.4 1.5 '. .s 

d j i  2 0 0 0 0  0 1 3  0 0 1 
W1 (n) ( z, z,  z, z ) =$ z z * z R9.100 ( V , V ) * z ; b  

K -  

I !  

J 1.4 
I, 0 1 2 3  i i 
I 

.. . \  - 
*'-. 

' I  . 
. (Z ,? OLOLO ) ( Z = OLOOL A Z ) * -2  

V t !  0 0 1 1 
K I 

S 1.5 1.5 1.5 G V t . .  . R9.101 ( z , ( Z, Z, Z, - ))  * R  
V 
K 
S L * '- 1.4 0 0 0  1.4 

. .  
2 3 1 1  0 .* 4 

. L  

* V  
i 

f 
* . ;:% 

i. 

z * R  z * R  i 

- f  

V 1 1  Fi - *  I 

K 
S 0 0  0 0  f .  

W. The Scmi-logarithmic Representation 

( as  used with Computer V4 ) 

1) Structure of the Number r 

In  the Computer V4 the numbers are represented  in the form 

y = 2 a X b  

wherein  a  is an integer and b  is  satisfying  the condition 
C- 

L,o < b 4 Lo,o 

This expression  is supplemented by  the sign  as  well as by the  symbol  for " imaginary " and 
some  Special  symbols. 

The value  a can be  positive or negative and of the  structure A10.2.0 with n = 7. a is an 
integer binary number of 7 digits, the negative  values  being  represented  as  supplements. 

The value  b  is  represented  by 1 + b' . b ' represents  the digits of b after  the  point. 
The digit  before the  point is always L . b' has 22 binary  digits. 

The sign, the " Im"  -Symbol and  the Special symbols are  each Yes-No-Values. They are 
.combined to form a group of 3 Yes-No-Values. I 

I 
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0 1 2  

P 

1-1 1-1-2-3-4-5-6-7-8-9-10-11 -20-21-i2 I ' 4 t  
6 5 4 3 2 1 0 21 201918 2 1  0 

* 
4. - 

.+ i 

i b  
4 :  

i 

t {  

SAl = ( S1.3, Si.7, S1.22 ) t 

In Order to. avoid negative  indices, the digits of b' are numbered sucessively,  beginning with  the 8 f 
digit with the 1oGett value. This binary number with the  structure S1.21 is called b". 

b' = b" . 2-22 
The  notation M1 is represented by  the following  expression : t 

< .  s 
All 1 = ( S1.3 , A10.2.0, A9.2 ) . 
Tlle meaning of tlle co&one,$s 1 and 2 according to page /!Y{, is only true for normal 
values . This is indicated by't l~e expression 

L / .' t t 
i 
h 

Ko.2 

In  the case of a  Special  value, the component 1 has another meaning  wllile the  component 2 is 
insignificant. The following  values  are  represented  as  Special  values : 

1) The value y is '' exactly  zero " ( K1.2 ) 1 

-.. 

1 
2) The value y is " very  small " ( K1.5 ) ! lYl z 264 The limits  are 

lyl Z 264 

3) The value y is very  great ( K1.4 ) only approximate values 

In this , the sign may be known or unknown, ( K1.3 ) . 

F 

t 

t f 
4) The valuc  y  is indeterminate. I t  may also  be complex ( K1.l ) 

In tlle  following section some programs for arithmetic Operations with such complicated structures 
are  developed. As they are only of relevan,[irl case of Special  inter&, this selection is omitted  in 1 e 
the English  Version . 

/ 

I 
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Chapter 4 

Operations with Algebraic Expressions 

( In particular Calculus of Propositions ) i ) )  
4 2  

Contents Page j - 1 

'- . i 
. *  ?. 

* ,  . \  . _  

I. Introduction ,'. . 
1) Problem Definition 

2) Representation of Expressions 

3) Representation &' Programs and Functions t 

.- 

* .  

11. The 'Calculus of Propositibns ., 

L . . , \  

. .  
* .  I 

1) Definition of the Form of Re'ptesentation qyL4 
2) Rules for the Formation of Series of Symbols and Tcsting of these for Compliance with the /]Y$- 

Rules I 
3) Simplification of Expressions 

4) Introduction of the Computer Oriented Representation of Propositional Expressions 

f 

I 

L 

i 
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I. Introduction 
. ,  

r ;  t, : t  
1) Problem  Definition =-. 4 - .  

L 

4 I : :  
! .  

The proccssing  of any algebraic expression , e.g. 'arithmetic or propositional , is to be autohated. i 

In detail, the Problems  are of the following types : 

a) Investigatian if  given expressions  are formed in compliance  with the d e s .  

b) Simplifi&ia? af Expressions 

C) Investigation of  Predicates'of  Expressions 

d)  Ordering  of Elements of  Expressions 

e) Transform&ion of Expressions 

f) Substitution. of  Variables  by  Expressions 

% -. 

g) Development of Pr,ogram\s 

h) Investigation 06 fixpressfpns for Identity 
' .  I 

r i .  

1 '  f 

f 

L 
P 

C *  e 
f 

i 
i) Derivation  of Explicit Expressions form Implicit Expressions f 
j) 'Developnlent of the Derivative  of Arithmetic Expressions 

k) Integration of Arithmetic Expressions 

1) Transformation of Different Forms of  Representation into each  other 

t 
R 

- *  

i 
This list can be  enlarged , arbitrarily, up to an  automation of complete algebras . '. 

. . . . . _ _  . .- - . . . . .. .- . . . . . . . -. . .. . ..., .. . . . . .  . . 
2) Representation of Expressions f 

Algebraic  expressions  are rnost advantageously represented by a series  of symbols ( strings ). The 
representation may follow already introduced forms. But new forms can also be introduced, f 

which  are  specially suited for Computer  processing. 

The  commonly used forms of representation  must be  varied to some cxtent, since they are not 
mere  serics  of symbols ( E.g. negation dash in the representation of Hilbert 's calculus of 
propositions, faction stroke,  and  representation of  powers  in arithmetic expressions ). 

For the various symbois a unifornl structure U is advantageous, e.g. S1.n. 

. An expression  has  then  the fcxm  of a list S3.m = mXu.- 
This principle allows different forms of representation. 

3) Representation of  Programs and  Functions 

Thc entire field  is  very  extensive, therefore , a  systematical  numbering of all programs  would 
be too complex. 

I 

Within  various sections many  analog  programs occur,  such as those  for investigations of 
expressions, simplifications, predicates ctc.  For the notation of such programs  series of  letters ' 
are introduced  first  which, if  necessary , can be supplemented by indices , e.g. Sal , Sa2 etc. 'for 
meaningful  expressions ( syntactic correct ) . 

L 

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA



- 174 - 1 

4 

11. The Calculus  of Propositions 

1) Dcfinition of the Form of Representation 
7 

A form based on the  formalism  of Hilbert is  Chosen here, but with the following  Variations: 

a) Instead of the '' & " , the Symbol " A " is introduced. 1 '  f 

i 

b) Operation syhbols are  never omitted. 

C) Negafion  is..iepresented  by a ncgation  da& " - " before the expression wvhich is to be i 
1 : "  

d) Only onc type of brackets is  allowed. t i  
negated.'It  tlh-expression is composite  it  must be put in brackets. .- t 

This form of representation results  in  nlere  scries of sy~nbols, e.g. : 
4 

, .  aAb 
- a v ( b A C )  

(,'(,.aA,b) V ( c h d )  V e )  -g. 
, , 'b 

The .following types of  Symbols are avaiable : 

L 

L .  E 
t 
Y 

t 
a) Variable Symbol 8 .  
b) Negation Symbol ( monadic ) 

C) Operation  Symbol ( dyadic ) t 
. C  , 

. d) Bracket Symbol 

e) Blank  Space Symbol. 

The  number of the variable symbols is in principle unlimited, but  a practical limit is  Set by the 

f 

structure U of the  symbols. 

The following  Operation symbols are used : 

V Disjunction 

A Conjunction 

+ Implication 

7 Disvalence 

- Equivalence 

The  brackets are round ( ) . 

t 
# 1  
t 

I 

I 

i 
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? 

As an  exrunple for  the rcpresentation of tke symbols we take  the following notation: 

U = S1.8 

01234567 

t 'Variable Vi 

0000--- 

0000--t- 

oooot-t- 

oooot+-- 1 
t-+t--- 

-t+t--- 1 
M-++--- 
-tot--- 1 
t-tot--- J 
. .  

Blank  space 

Negation - 

1' 

:r 

Operationssymbols . .  
* .  I 

L .  . , "\ .. 

r i .  
t 

L 
L 
P .' F 
f 

i 
" o " means, that  the  component of U in question is different. In the case of variable symbols the 2 i 
Positions o to 6 of U are  used to identify  the variable ( index of V). i 

Predicates are introduced  for  the different types of symbols, for instance : 

R 
- C  , 

1 
V *   v a ( v )  V A  V h V A V * O ~ ( V )  

V 0  0 

4 5 6 7  K 7  
0 0 0 0  0 

2) Rules for the formation of  series  of Symbols and Testing these for Compliance with the Rules 

The following rules are established : 
I '  f t 

a) A Single variable represents a meaningful expression 

b) Insertion of a negation symbol in front of a meaningful expression results in  another meaningful 
+ ' 1  

expression. 

C) Insertion of an Operation symbol between two maningful expressions results in  another meaningful 
expression. I 

d) Bracketing of  a meaningful expression results in another meaningful expression. 

Expressions developed according to these  rules are in any case propositions. But they do  not always I 

correspond to the operational linkages of their development. 

The expression - a  b  for instance can bc developed form  the expression a V b, but the  former 
is not the negation of the proposition a b. In common representation it does not mean a V b 

Likewise the expression al A bl and  a2 A b2 can be combined : 

1 

but ä V b. 

. I  

al A bl V a2 V b2 

i 
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According to the rule, that the Symbol V binds more  strongly  than  the Symbol A , this 
expression does not correspond to the expression : 

( a l   b l  V ( a2  b2) 

but  to  the expression 

,But this re'sult.ignot relevant  with  regard .to the criterion " meaningful expression " . Expressions 
formed accordihg tb-the . d e s  given  above are in any case meaningful. 

Since  any  meaningful  expressiorl can be produced  with the aid  of brackets, redundant  brackets 
may  occur. 

\. 

l l ie exact 
;r 

formulation of the rules is the following : 

Sa ( X ) *., , means " X is a  meaningful  exprcssion " 

Va' ( X ) * * -'.means " the expression X consists of a Single variable " . 

. .  
C '  

\ 

' I\ 
* .  + 

J . w Y o 9 Y 1 )  means concatenation of the series  of  Symbols yo  and y1 

In Order to transform this implicit expression far Sa ( X ) into an explicit one the following 
procedure is applied : 

Expressions of the  form Sa ( X ) are developed step  by  step  from Single variables according to 
the rules b, C,  d ( See  pageA$T) . In any step , Symbols or series of Symbols  are concatenated. 
Therefore the criterion has first to be established that  two  symbols may  follows each other in a 
meaningful  expression . 

According to the rules a  negation Symbol must be situated in front of a meaningful expression. 

An Operation  Symbol must be situated between  two meaningful expressions 

The left  bracketrmust be situated in front  of6he rigllt bracket9behind  a meaningful ! 

expression . 
The following predicates are defined : 

I 

Az ( X ) '' The Symbol X may be situated in front of a meaningful expression " 

Sz ( X ) '' The Symbol X may  be situated behind a meaningful expression " 
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1 
5 

The exact  fonnulas read: 

( E x ) ( S a ( x ) ~   x = V )  =) A z ( V )  9 

V 

0x0 U 4  o u  s 
0 K 

0 0 . 4.. 

’ I  

(Ex) (Sa ( X )  A X =  V )  * Sz ( V )  
V 
K 

0 0 

S mXu . :U; 0 U o u  
‘ . .m-1 

‘ \  , \ . ,  - 
.- 

( Meaningful expressions exist, tiie first and the last element of which are equal to V ) . 

From the formu1as;bn Page 4% the following recursive definition for Az results: 

0 

I .  

V a ( x )  V N e g ( x )  V K l a ( x )  - V  A z ( x ) - A z ( x )  

By an transformation, not &ow,h$~ detail here, results: 
4 

* *_ 

V a ( x ) v   N e g ( x )  V K l a ( x ) ’ - A z ( x ) .  

Similary, an expression for Sz can be developed: 

V a ( x ) v K l z ( x ) - % ( X ) .  

i 
f 

The predicate ‘Az ( X ) is defined as follows: 

“ In an meaningful expression the symbol X may stand in front of a symbol of the property Az ”. 
From the results: 

4 

f 

N e g ( x )  V K l a ( x )  V O p ( x ) - ‘ A z ( x ) .  

In the Same way Sz’ ( X ) is defined : 4 t t 
--. 

---+ ‘VliThe Symbol x)fi meaningful expression,nuy / follow .a  Symbol of the property  Sz ”. 
~ ___.____. - _ . . .  1 

i 
K l z ( x )  V O p ( x ) - S z ’ ( x ) .  

Supposing that each symbol must have just .one of  the properties 

v a ( x ) , z r ( x ) , N e g ( x ) , K l a ( x ) , K l z ( x ) , O p ( x )  I 
I then  must be true: 

I Z r ( x )  +( ‘ A z ( x ) - S z ( x ) )  I\ ( S z ’ ( x ) - A z ( x ) ) .  

\ Now the auxiliary function is developed : 

I 

I 
I 

i 
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I 
4 

. .  I 

" In the list V the element V immediately follows the element V " . 
2 1 0 ' 4 .  I% . 4 * .  

( E x  

V =   V A  V = '1 =$ sqo ( v,v,v ) '+ ' 1 :  
2 0 2   0 1 2  

i i b  
x+l 4 5  

t 
I ' \  i 

Now Sql can be defined implicitely : 1 

'L Meaningful  seri,es-of  Symbols are possible  in  which the Symbol V follows the Symbol V I' . ! . -. .. 1 0 q 
( Ex 1 ( s a (  X ) A sqo ( v,v,x 1 ) "  Sql ( v,v 1 I 

0 1  0 1  1 *  
! t L 

(3 

The follovfingt expression can be established : 
C 

P 
( . ' h  ( V )  A k, ( ' U ) )  V ( sZ( V )  h SZ' ( V ) ) +  sql ( v , v ) * '  L! 

0' . . : ':& .. 0 1 0 1  - *_ ; 
Its derivation has already be'en performed. This has to be additionally investigated only if offier 
cases of succeeding Symbols  are  possible which this formula does not identify. Recursive conclusion ' 
proves that  the formula rules  all  cases. 1trepresentes.d cases in which Symbols for  the  limits ! 

becolne succeeding Symbols  by concatenation . 
' . B  

t 
Single symbols and series of Symbols of the property Sa ( X ) exist as elements of this 
concatenation. These  can be developed step by step fonn Single  Symbols, without generation 
of new adjacent Symbol combinations. f 

So we may write : 

( ' A z  ( V )  A AZ ( V ) )  V ( SZ(  V ) A  SZ' ( V ) ) = $ S q l  ( V , V )  
' 0  1 0 1 0 1  

This can  be transformed as follows : 
-- 
Zr(  V )  A Zr(  V )  A ( S z (  V )  3. A z ( V ) )  * S q l ( V , V )  

0 1 0 1 0 1  I 
This is only true for isolated expressions which do  not include Symbols for '' blank space " . 

1 
Now one necessary condition for Sa ( V ) has been formed : 

0 

X 1 ( Y 1 ( sqo ( X ' Y ' V )  ( X , Y  1) 
0 0 1 

t 

But this condition is not sufficient in the following cases : 

v a  

( a  A , ~ A  I 

It becomes clear, that  the first Symbol must be of the  property Az and the last one of the 
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I 

I 

property Sz : 

Thcse  expressions contain too many, respectively too few,  brackets.  According to the rules the i i 
numberof the .( Symbols must be equal to the  number of the ) Symbols : L '  

Additionally, the following conditions are  required : 

If  for " growing  list " any  list is understood which can be extended to  the list V by  only 1 
adding furthcr Symbols, then the covering condition reads : " For any growing 1st 0 tlle number . 
of ( -symbols must be  greatcr or equal to the' number of ) - Symbols " . This condition 
is not  fulfiled by the growing list a) which  belongs to the series of symbols a ) V ( b . f 

.' " 

It can  be  defined : 

A l  ( V, V ) e " V  is  a  growing list of V " , 
0 1  1 

. .. - . . .. .., . . .  

The  conditions menfioned above then  look as follows: 
...- . .. . . . . .. . - 

S a ( V  )4 

S 

i 

I 

i 
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.. -. . .. .. 

V 
S 

" If Sa ( X ) is true for thc generation  of used partial expressions  tllen it is also true for  composite. I 
expressions . " The  exact  proof is not reproduced here. 

The cxplicit fonnula  for Sa ( V ) can be transformed to achieve  easy computability. To each 
f 

0 

V. 
K 
S 

V 
K 
S 

V 
S 

V 
S 

V 
S 

0x0 0 1  

W 

1 

@ 
U 

E > O * A R  
0 

1 .n 0 

0 0 

U 0 

I 
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The  first symbol must be  a start  symbol . ... ~ f .  
'! > 

Zo is the  last symbol of the just investigated  growing  list. k b  
Z1 is the following  symbol. 4 :  

The fiat Zo is supposed to be  a  negation symbol, in Order to comply with Sq ( Z, Z ) 
0 1  t 

, 1 :  

I ' .  .\ 
The *" \gajcc of brackets " E is zero at thc  start, .. 
The next element of the list V, results  in the new Z1. r t  
If this does not exist  then go to , @ . t 

For 2; and Z1 the " sequence-condition *' Sql nlust be true . L 
If Z1 is a .( -Symbol then E is  increased  by one . C 

. f  . 
- 

4 

If Z1  is a * )  -.&bol then E is decreased  by  one. 
* I 

In any step e must be  greater then or equal to zero . 
Z1 is substitutcd  for  the new Zo . Go back to @ 

Tlle last Zo must be an end-symbol. 

E has to be Zero at the end of the  computation . 
t: 

It was  already  been mentioned that this program also results in  thc predicate " meaningful 
expression '* if  there are redundant brackets. 

f 

The following  cases  can  be  distinguished : 

a)  Single  variable in brackets : 

t 

( a 1 A . b  

b) The entire expression in brackets : 

( a  " b )  I 
C) Redundant brackets : 

(( a .  A b )) V C , 

d) Brackets  which  are redundant according to the associative  rule : 

( a  V b )  V b 

e)  Brackets  which  are redundant according to the rule of stronger binding . 
( a v b ) ^ c  

The cases  a, b, C are  especially  simple and will therefore be  discussed first. 
I 

In Order to exclude tllese  cases,  new d e s  for  thc development of meaningful  expressions  have 
to be  established. For this purpose somc new predicates are defined : : 

C 

i 
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Ba (, X ) = " The series  of symbols X can be .put in brackets " . 
Ca ( X ) = '' The series of symbols X is put in brackets once '' . '*  i 

The d e s  for  the development of meaningful  expressions then assume the following form : d t  r 
a)  A  single  variable  is  a  linkage  expression . > 

i 
b)  By  inserring ayegation symbol  in  front of a  linkage  expression an other expression , wllich ' 

.. 4 - .  F .  
0 1 :  

* * \  

can  be put  in brackets , is  p'ioduced . t i  
C) By  inserting  an  Operation symbol between two linkage  expressions an other expression,  which * X 

can be put  initxackets , is produced. L 
d) By bracketing an  eipression for which this i s  allowed  a " bracketed expression " is produced. F 

L. L! 
e)  An  expression whicli'ian t$ put'in brackets or a bracketed expression  is also a  linkage t 

. .  

expression. ' . , .'\ - ._ j 
L 

f )  A  linkage  expression  is also a  meaningful  expression. A bracketed expression is not a meaningfui 
expression. R 

* "  

The formulas for these  rules  are the following : I 
a)  Va' ( V )  + A a  ( V )  

0 0 

V = Lz( x,y ) A Neg ( X ) A Aa ( y )] + Ba( V ) 
b, r 0  0 

. f  i 

L 0  V =  Lz( x,y ,  z )  A Aa ( X ) A Op ( y ) Aa(z) l  + B a ( V )  0 

V =  Lz( x,y,z) A K l a ( x )  A B a ( y )  
0 

e) Ba( V ) V Ca( V ) + A a (   V )  
0 0 0 

0 Aa ( V . )  A. Ca( V ) + sal ( V ) 
0 0 0 

In Order to specify that thcse  are the .only f o m u l s  for Aa,  Ba,  Ca,  Sal thcy have to be 
formulated as follows : 

i 
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i 
, ' P. 
. .  

Va' ( V )  V Ba ( V )  V Ca( V )  - Aa ( : \  ? '1 t- C o  0 0 0 1 3  

T: = 

, T 

-.. 4.. E 
I I r  

LZ ( X,Y * Ne&) A AdY)) V ( V = Lz ( X, Y, z ) A Aa(x) A Op(y) I\ Aa(z)) - Ba ('V ) b;i, 
0 - 0  

-' tt. I 
V = Lz ( x,y,2 ) A Kla ( X) A Ba (Y) A Klz  (z)) - 
0- * 

Ca ( 
0 '1 

' .  \. 

A[Aa ( v: j G ? ~ ( . , v )  - 
To transfornl thisqimplicit formula Sal ( V )  into an explicit formula, the condition for Sql (x,y ) 
is established first5It c a n b o w n  that theoformula derived before for Sql is also true in this case . t rbeli 
Generdly , the  foliowiig is true . .  : L 

': . X -+ SaO ( X ! 
; 

which means that if an expresqLon  is meaningful according to - stronger rule Sal, then it is also i 
correct according to SaO. t 

To obtain Sal the formula for SaO must be supplemented by additional rules for brackets. Only . .. 
expressions of the form Ba ( X ) may be bracketed. But these again  can o d y  be developed by 
the linking of expressions by means of Operation  Symbols or negation Symbols. Therefore , at least 
one Operation  Symbol or one negation symbol must be situated between two coordinated brackets. 
Examples : 

0 0 Sal ( V 0 )I .- 
C 

T 
L -  r 

L .  . , h% 

8 

< a  b )  F 

( a u b ~ c )  

But this symbol must not be bracketed by additional subbrackets such as,  e.g. : 

( (  - a  1) 
I 
1 

This is a casr? of duplicate brackets. The formulation of this condition is possible with the aid of 
the balance of brackets E ,  which specifies how many brackets have to be eliminated for each 
Va - or Neg - or -0p- symbol . 
Example : 

( a ~ b ) v ( a h ( - b ~ c ) )  

E 1 1 1  0 1 1  22 2 2  

Within each pair of brackets there must at least be one Operation present or one negation symbol , 
of the corresponding level  of E . This is expressed by the auxiliary .values Z 

2 
f 

C 
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i 
? 

. .  
The following  program for Sal results : 

In Order to exclude bracketing  of the  entire expression, Z has to be positive in thf case  where 

V is not a  single  variable . ' '?  i 

R (  V = R  R =  Sal ( V )  4 :  
! 

, 9. 

t E  j 1  t 

2 
0 

. 4. - 
' 1 :  

0 f b  

V 0 0  0 0 : 

S . .?XP, . .  \ .  

Az ( . V j ' = , A R 1 8 * z  O * E  - $ z  Q- 
V 0 0 0 

I 1- 

1 '  K 0 0 
! 

t t 

S z (   z ) * A R  

0 K 
0 2 0 0 0 0 V 

( s ( V )  + z )  * A R  E = 0 * A R  

N~~ f i e   cae  d) arid e) ( See page A31) are dealt with. It is also idented to exclude brackets 
can be omitted according to the binding rank of the Operation  Symbols. ' 

The ranks will be ordered in such a  way that the stronger  binding  Symbol has the lower rank. The 
Symbol with the higher rank, tlrerefore  reaches  farther. Thus  the propositional Operations are  then 
ordered as follows : 

- V A  

0 1 2  3 4 5  
I 

If  the r a n k  of a Symbol  is  designated Rg ( X ) , then i t  is  possible to assign  a rank Rg ( y ) 

1 

i 
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to each expression.  In this Single  Va - symbols are  assigned  the  rank  Zero. 

Since composite expressions  can  only be developed with the aid  of  Operation symbols, eich .. . F .  

composite expression  has  an  Operation symbol, which corresponds to the last composition.  The !, 3 
rank  of this Symbol  is equal to the rank  of the composite expression. 

Now new  rules for meaningful  expression  can be established : ( 
6 :  

a) A singleva~jhb~e Symbol  is a meaningful expression of the rank Zero. 

b)  By insertion of a negation Symbol  in front of a meaningful expression, the rank  of  which  is 

.’- . \. 

either Zero or is not Zero but bracketed,  another meaningful expression is produced. 5 

;r 1 ’  t 
C) By insertion-of an Operation  Symbol. for whbh the associative  rule  applies ( V , A ) between , 

two meaningful  exprgssions;another meaningful expression is produced, if the expressions to L .  I 

be connected satisfy.the.  foubwing conditionr : either their rank  is  lower than or  equal to t 
that  of the Operation syrnb&.pr it is higher and the expressions to be connected are bracketed .i 
singly. f 

t 

d) By insertion of  an  Operation  Symbol, for which the associative  rule does not apply (+ , .t- , - ), . 

between two meaningful expressions, another meaningful  expression  is produced , if the f 

expressions to be connected satisfy the following conditions : either their rank  is lower than that 1 
of the  Operation  Symbol or it is equal to  or higher than this and the expressions to  be 
connected are bracketed singly. 

i! 
e) An expression  between Single brackets is developed  by bracketing  a  meaningful  expression not 

previously bracketed. C t 
t 

f )  The rank  of composite expressions according to b), C) and d) is equal to  that of the Operation , t 
Symbol  used in the last linkage procedure. 

g) The rank  of  an  expression  is not changed  by its bracketing. 

I 

i 
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The  exact  formulation  of the d e s  a> to g) reads: 

a) V a ‘ ( V ) - +   S a 2 ( V )  A R g ( V ) = O  
0 0 0 

‘4 

+ S a 2 ( V )  A R g ( V )  = RgO) 
0 0 

+ ” ( V )  h Rg(V)=Rg(y)  
0 0 

Meaning of  the new predicates: 

Kl‘(x) “Ihe expression X is a singly bracketed meaningful expression”. 

Opa(x)  “The symbol X is an Operation symbol  for which the associative  rule  applies”. 

The  corresponding program for  Sa2 can be  derived  as  follows: 

Sa2 ( V ) 4 Sal ( V ) 
0 0 

The conditims of  Sa2 remain the same, but  the conditions  for  the justification of  brackets are made 
more stringent. 
First, for each bracketed expression the  rank assigned to it  must be investigated; further,  the  rank  of 
that Operation symbol which  is  linkage with the pairs of brackets. For according to the d e s ,  each 
bracketed expression must be fitted with an “inside” and an “outside” Operation symbol. If X is 
tlle inside and. y the outside Operation symbol, tllen the  bracketing is justified, if the  following 
condition is satisfied: 

I 

( Rg(x) > Rg(y)) (X = Y Opa(x)) 
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$ 

U '  j 

The inside  Operation  Symbol is the  one between the brackets, but  not between  sub-brackets,  which .- : 
has the higher  rank. The outside'  Operation synlbol is that one of the two adjacent Operation t 
Symbols ( if they exist ) which  has the lower  rank. ' r ;  
Example : 

Outer brackets . 
. .  - . ' inside  op.-Symbol : 

' outside op.-symböl 

' .  . .'. . 
Inner brackets 

inside  op.-Symbol 

outside op.-Symbol 

A 

i . * . . 1.. 

+ Rank 3 

V Rank 1 

- Rank 5 

A Rank 2 
L 

. &  
1 

The rank of the  two 'symbdli  &st  be  investigated for each bracketed expression. To perform this 
investigation currently, i.e. by'a step by step. inspection of succeeding  Symbols of an expression f 
the relevant  values must be stored  up  to the bracket level E . To each bracket level 0 to e 
the following  values  are  assigned : - *  

I 

I 

Z = highest rank of all so far inspected  Operation  Symbols of 
3 
i tlle just investigated bracketed expression of  the level E . 

( inside  Operation  Symbol ) . 
Z = lowest rank of all so far inspected Operation  Symbols of the 
4 
E just investigated bracketed expression of the level E . 

( outside Operation symbol of the level e + 1 ) . 
Z = , " The Operation  Symbol  belonging to Z has the  property Opa. 
5 4 

t t  

e e 

Z = indicates that  the preceeding  Symbol  was  a  Klz-symbol. 
6 I 
The  computation is performed in the following  way : as soon as the preceding  Symbol  was a 
Klz-Symbol ( Z6 ) , i.e. after tlle investigation  of  a bracketed expression was completed and  the 
succeeding  Symbol  became known,  the  justification of the braclceting  is tested 

After that the values Z, Z, Z are  erased. 
3 4 5  
E € €  
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At the start of each bracketing  investigation  the  input  values nust  be set as follows : 

. . 4.. I 

’ 6  

Z must be  equal to the  highest  possible rank of tlle Operation 
4 
e 

Symbols, SQ in  -the  first computation of the  formula 
%’. . \. 

Min ( Z , Rg ( Z ) )  * Z  
4 1 4 
e E 

.I 

Rg ( Z ) .results form Z 
1 .4  

’.. e, 
* .  I 
’ P.% 

First  we  state : * .  .. 

C .  8 
t 

f 

I 
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R (  V ) b R  R = S a 2 ' (  V )  Erroneous 
V 

ox U S 
0 0 0  0 see page ~ c i  4 t 

' 1  
'4 . 4.. ~ 

AZ ( V ) = + A R  & = + z  O = + e  - * z  0' z 5 = +  2 - * z  
V 

S U o u u  1 Q i  193  1,3 o 
0 0 0 0 0 K 
0 0 0 2 3 4 '5  6 

1 

V 
K 
S 

V 
K 
S 

V 
K 
S 

V 
K 
S 

V 
K 
S 

V 
K' 
S 

V 
K 
S 

V 
S 

V 
S 

J 2  Sql ( 'z, z ) =+ A R  .'. . 
*. 1 1 0 1  0 

U 0x0 

Op ( z )  v']Neg( z)-t 
1 1.. 

L1 1 

U u u  0 

-t=+ z ( R g (  Z ) = Q  Maj 
2 1 7  
E .  

0 U 1.3 

E e 
1.3  1.3'  1.3 

2 3  

6 

0 

-( 2 > Z V ) V (  2 

3 4 3 
E + l  E E+ 1 
1.3 1.3  1.3 

z * z  Opa ( 
7 4 

E 

- 1.3 1.3 ' 

- 3  2 0 J 2  5 * z  
2 3 4 
E E E 

0 1.3  1.3 

K l z ( z )  =+ z 2 - 2  

1 6 1 0  
U o u u  

2 9  

3 7  
E 

1.3 1.3 

2 )  * 2  

1 5 
E 

U 0 

--:I E 0 ' 

Sz( z )  * A R  I E = O * A R  1 ( Va' ( V )  + z )  = + A R  
0 0 '  0 2 0 

U o l l  0 0x0 0 0 

I 

f 

I 
L 

ir 
f '  

i 

# 

k 
L .  

t 

F 

I 

I 

C 

i 

t 
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, I 

4 .  ,i I 
4 

. / j  ; i I '  ' 1  
i 

N *  
$ 

4 / 
./* 

/' i ''L The program for Sa2 can  be  demoristrated  by an example : 
' *  . C 

-.---- : f  f 

r . ,  
V, = - (  a v b ) + ( ( . c ~ d ) v - b - + e ) - f  . 4. . 'i 

7' 1 : ,  

V E  z z z z z z  z z z z z z z z z  z 
X 0 o 1 2 2 2  3 3 3 4 4 4 5 5 5  6 7 
K 

" 
( 

* . ' \  . 0 1 2  0 1 2 0 1 2 0 1 2  i, . .  . ' 0 , I : *  - - 
I 

1 -  0 0 5 .$\Y t !* 

8 ( 1  - + (  t-' 3 0 3 5  fj z t 

0 - 
. 2  ( 1 

3 

0 '  5 

1 0 5  

1 0 1  

Tj t 
9 , /  - I '  . +  

3 .  a 

4 "  

S b  -fi 
- 

4 i 

1 0 1  tt - f 

L. 

f - 
, 3  

6 1. b )  

7 3  ) - +  3 
0 0 1 0 1  i'c E t .tt - *  

0 i t l  3 1 3 1  I '  

9 ( 2  ( (  
/ ' i  

f - 3  0 0 3 5 5 - $ -  

10 C 
L 

( C  
2 ti- 3 0 0 3 5 5 --L - I F 

11 A C A 1  2 
2 t-t 3 0 2 3 5 2 L--+ - 

12 d  ~d 
2 t-t 3 0 2 3 5 2 ---+ - 

13 1 d )  [ t  t 
t-t 3 0 2 3 5 2 ---+ i. L 

ttt 3 1 2 3 1 2 --++ - 14 V I v  1 1 
1. 

1 t t t 3 1 2 3 0 2  

1 ft.t 3 1 2  3 0 2 - - - + -  

1 +++ 3 3 . 2 3  0 2 - - - + -  

1 t t t 3 3 2 3 0 2 - t -  

15 - v -  &P:. Q 
-C- j 

16 b - b  ---' 

17 3 b - +  

18 e + e  

C 

3 I 

19 1 
20 - 1 -  

21 f - '  f 

0 e - )  ttt 3 3 2 . 3  0 2 ---f + 5 
0 ttt . 5  3 2 3 0 2 ---+ - 
0 -  t t + 5 3 2 3 0 2 - - + -  

The current intennediate values  have to be distinguished  with regard to the  difference between ' 
old and new values to the left and to the right of the Symbol " * '' . Thereforc,  the symbols < 

# C 
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? 

are sometimes positioned between the lines. .-. i 

The program of Page 4 2.f is not  yet complete. For this reason it was designated  Sa2‘ ( V )  
according to  Sa’( V )all brackets which  are redundant according to the  iules,  are diminafed 0 , 
but no investigation ‘is performed to find out whether all necessary  brackets  are set. 

. 1 

. & r  . t  r i  
.‘ 1 f 0 E 5 -  

i 

The program  allows the expression : 

a - t b - + c  

but according to,,$e ryle  d)  page ’j x r s u c h  an expression  is not allowed. Pennitted  are,  either i 42r 
the expression :-. . ’ *  

( .. 

or  the expression : 
;r 

.. 
( a + b ) + c  

I .  

’ a - + (   b - t c )  

I 

L . .  Y 

for the associative  rule  does no,L apply to the implication. Therefore, if the expression  which  is to t 
C’ C 

be linked with another ixpres&h,  by the symbol + is an implication itself, then this expression i 
has to be bracketed , since both expressions are of equal rank. f 
The Same applies to the Symbols ? and - . We get  the following demand : 

“ On the Same bracket  level only one of  the Symbols -+ , -t. , - at  most is  allowed ” . 
Thus we need for everj level three Yes-no-Values which indicate if  these  Symbols  already appeared 
within the  just investigated  pair of brackets. The ?hree  values  are combined to the value Z 

8 

t 
A 

- *  

1 

Definition : 

Imp ( X ) = “ X is sn implication  Symbol ” 

Disv. ( X ) = ‘‘ X is a  disvalence  Symbol ” 

Aeq ( X ) = “ X is an equivalence  Symbol ” 

E 
f 

The program on Page Afmust  be supplemented by the following : “89 li 

V 
K 
S 

V 
K 
S 

- h P ( z ) -  1 10 Disv ( z 1 ) 3 z 1 1  Aeq ( z 1 ) 3 i 2 2  
U 0  U 0 a 0 

Z A Z A , Z  r\ Z A Z A Z * A R  
8 10 8 1 1  8 12 0 

E . 0  0 E .  1 0 E.2 
0 0 0 0 0 0 0 

z 3 2  

10 8 
z * z  z * z  
12 8 11 8 

E . 0  E . 2  ’ e.1 ’ 

-0 . 0 0 0 0 0 

(I 

. i  
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At the start the following has to be set : 

V 
K 
S 

( --- ) - z  
8 
0 

1.3 

and  for each Kl? - Symbol: 

V 
K 
S 

( --- ) 3 2 '  

8 
E 

1 .3r 

The program on &ge * I  I ?Y contains an error. * .  

i . "  .. . -,.  

1 
I 
? 

4 * *  j 

I i' 

i' 

V . r i (  
? 

f t  
.- i 

1 l/t 
L d q  
P 

If  the  last Symbol  is a ) t symqol then the coordinated bracketed expression is not investigated. L' e # 
For instance, the foll?wirig'e~$gssion is  allowed according to the program : . .. ; 

f '  

I 
a A (  b v c )  6 I 

Here the brackets are redundant. This fact  cannot be tested, however before asymbol suceeding 
the Kla - Symbol  is investigated. Since this Symbol does not exist, the  test  cannot be perfoned. 
This failure can be avoided  in the following way : 
a) An i - expression is substituted  for the I.( - expression 

- *  

t 
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j k  
' t  t R (  V ) *  R R =  Sa2 ( V )  

. 1 
' .  

V 0 0  0 r i  0 

S '4 mX (I 0 
I. . 4 ."  

' 1 :  
h ( V ) * A  R Q * z  O*E)-*Z O * z   5 * z  ' 4  i 

V 

1.3  1.3 1 0 0 0 0 . o  S 
0 0 0 K ' o  
4. 3 2 0 0 0 

.'. 5 

T,, 
* <  . '. 

- *  z ( - - - ' - ' * :C 1' z 
t 

V 5 '  

- 0  1.3 0 S 
. O  0 K 

6 ' .  

i , 
W1 (N( V ))';V.* Z- Sql ( z, z ) * A R 

V , o  0 1 .   0 1  0 

K i & 

S , 0  U * * .  0 0 0 

I .. 8 f 1 '  
I 

. .  

L .  
' .  t . , "b 

OP(Z) V Neg(z)+-+* z Rg( z)*z 
V 

E E K 
1 1 2 1 ' 7  3 7  3 

0 U . 1.3 S 

V. 7 4  4 1 
K E E E 

S - 1.3 1.3 1.3 0 0 

rImp (z) * z Disv (z) * z Aeq (z ) =+ z I, 
V 

0 0  0 0  0 0 0 S 
K 

1 10 1 11 1 12 1 

. P  I 
t 

Z ~ Z V Z A Z A Z A Z - ~ R  

V 
E . 0   E . l   E . 2  K 
8 10 8 11 8 12 0 

~ 0 0 0 0 0 0  S 

Z " Z  z " z  z * z  

0 
i 
t 

V il 12 8 11 8 10 8 

! 
- * z O * z  z ( -  - -  j --ES z 5 * z  

K 
0 0 0 0 0 ' 0  S 

. e.2 r.1 e.0 
. .  

...7 k< 

V 

1.3 0 1.3 1.3 0 U S 
E E E E E K 

5 4 3 2 1 

C 
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V 
K 
S 

V 
K 
S 

d V  
K 
S 

v 
K 
S 

1 

U 

( Op(z) A z) V ( Klz (z ) A i=m-1 ) -;+ 

1 , 6  1 

.’. . .. 

E > O * A R  
0 

1 0 

;Z( Z) A E = O  z 
V 

U 1 S 
0 

K l z ( Z )  * z z =* z 

. .  :.lt‘ 6 1 o . .“1 
*_ e 

U’ o u u  

( 2  > z  
3 4 
E+l € 

1.3 ’ 1.3 

z “ Z  

7 4 
E 

, 1.3 1.3 

A ( v a ’ ( V  ) + z )  4 A R  
0 2 0 

ox U 0 0 

) V ( z = z A Z)eAK 
3 4 5  0 
E+l E e 
1.3 1.3 o , 

. ~ .  _ _  
3) Simplification of Expressions 

- - - . -  - - - - -  - - - -  . - -  -- 

An expression for which the predicate SaO is true is to be Simplified  by elimination of duplicate f 

’ negatbns and redundant brackets. This problern cannot be solved in one run since it is only after 
completion of the investigation of a bracketed expression and of the following Symbol that it 
can be stated whether the brackets are  necessary. In the first nln a supplementary value Z is 

whether the relevant  Symbol  is redundant or not.  First,  the investigation is only possible with t ,  # 
redundant negation Symbols and Klz Symbols. The corresponding Kla - Symbols result from 
a subsequent backward run of V .  

The program is  based  on that  for Sa2. But here only those expressions are necessary, which serve I 
tlie investigation as to whether brackets are  necessary. A little Variation is introduced, relative to 
Sa2. The outside Operation  Symbol  is formed as soon as a Kla - or a Klz - Symbol occurs. 

fonned, by which a Yes - No - Value is  assigned to each element of V which indicates 16 9 t 
0 

0 

The Yes - No - Value Z serves the investigation for duplicate negations. I t  changes its value 

whenever a negation Symbol  occurs. At the Start of each new period it has to be negative. If Z 
7 

is positive then Z turns positive. If several negation Symbols follow each other in a sequence, 

then every second gets the mark Z . 

7 

16 

16 
i 

In the backward run of V from m - 1 to 0 the bracket level  is investigated again. 
0 

I 
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V 
S 

K 
S I  

V 
K 
S 

V 
K 
S 

V 
K 
S 

V 
K 
S 

V 

0 

i 
U 

iClz(V);, 
0 

i 
U 

:- 
Rg ( V ) 3 z 

0 4 
i- 1 E 

U 1.3 

0 

i 
U 

- = + z  
5 
E 

0 

Opa ( V ) *z + =+ 61 
0 5 
i-1 E 

U 0 

0 0 4 
i t  1 i+ 1 e 
U 1.3 U 1.3 

O p a (  V 1 rs z 
0 5 
i+l E 

0 

+ *  z 
6 
E 

- 0  

Z A Z A ( Z > z ) V ( Z   = Z A Z ) , Z  

2 6  3 4  3 4 5  16 
E €   € E  E E €  i 

1.3 1.3 1.3 ' 1.3 o ' 0 

E - 1  * E  

C 

P 
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"L S 

W2 ( 4  
V 
K 
S 

V 
K 
S 

V 

K /  S 

0 7 
i 
U 0 j /  0 

0 7 
i 
U 0 

r =+ 

Kla ( V ) . A  z z 
.. 

0 17 16 

& 
' i  e i  

. .  0. 0 ' 0  

Neg ( V.? A ' Z  * z 
0. *: $6 16 
i 

* .  i' *- i-1 
U 0 0  

Wl(m)  z + V * p  R 
V 
K 
S 0 ,  

z " z  

i e  
0 '0 

7 

0 

Furthcr simplifications of expressions will not be  discussed  here. 

4) Introduction of the  Computer Oricnted Representation of Propositional  Expressions 

Before entering a  discussion on additional  automation of the Plankalkuel it is of advantage to 
introduce a form of representation which  is  specially suited  for this  purpose.  Since  this form 
will  be  processed  by computers, it will  be  called " Computer representation " . 
The Operation  Symbols between two neighbouring  variables  are  replaced  by function Symbols 
which are placed  in front of the variables. 

SO I is Ieplaced by 
a ~ b  

a v b  

For Operations for wluch the associative  rule  applies, the  function Symbol can be  associated 
with  several  variables : 

a v b v c v d  I V ( a, b , c ,  d ) 
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Composite expressions  then  assume the following form : 
! i t  I 

a ~ b v c - d  

( a ~ b ) v (   c + d )  

Negations  are  represented  as  follows : 

These  expressions  can now be  represented  univocally by Omission of brackets and commas : f 
- - - -  

1 

Now the “ range ” of an Operation symbol always  reaches to the next Operation symbol of the f 
Same or a  higher  rank. 

The Order of procedure of the Operation  Symbols  according to Page I irf’rcould be applied;  the 
highest rank of a formula could then be reduced. But the resulting  simplification must be paid 
for by  more cÖmplete  programs. 

However,  this representation allows  ambiguities, as the following  expressions with identical 
Computer representation Show : 

ef- 
I 
t 

a v b v c ~ d  aeq h v a b c d  
2 1  

This can happen only if a conjunction and a  disjunction symbol are adjacent to each  other. The 
Same ambiguity occurs through an  exchange of the Symbols A and V in  the above  expressions 2 

t 

f 
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( a ~ b ) v c v d  aeq v ~ a b c d  
2 1  

( a A b ~ c ) v d  aeq v . ~ a   b c  d . 4- . 
2 1  ' 4  

Such  ambiguity is not possible,  however , with operation&hich  must always  deal exactly with 
two  operands. * 

t 
1 '  

i 

1 "C- 

a V b ; I . . c . . t ' d  aeq + v a   b c  d . .  . '  .'. . 2 1  .. 
( c - d ) ~ a ~ b  aeq A - C  d a  b 

2 1  
A 

In the Erst case the lqt  of the variables.  a,  b, C, d, must be coordinated to the symbol + , 
since only then. does the symbol  combine  two  operands.  The Same applies to the second 
expression in which  thc:varia!Aes C and d must be coordinated to the symbol - and 
the variables a  an8 L b ' to 'be symbol A . 

L .  

These  ambiguities  can be eliknated in various  ways : 

a) Variation of tlle sequence according to the commutative rule : 

a v b ~ c ~ d  aeq c A d ~ a v b   ~ c d v a  b 
2 1 

a V b v c  ~d  aeq d r \ a v b v c   ~ d , v a  b C 

2 1  

This method does not need any additional symbols,  but  only  formal  transformation . 
b) Assignrnent  of  ranks to  the variables : 

a v b ~ c ~ d  aeq ~ v a b c d  
2 1 0 0 1 1  

aeq ~ ~ a b c d  
2 1 0 0 0 1  

a v b v c  ~d 

C) Auxiliary  Operation  of the identify I ( X ) 

I ( x ) = x  

Now a  rank ean be  assigned to I ( X ) 
0 

a ' v  b A C  ~d aeq ~ v a b 1  C I d 
2 1  1 0  

a v b v c ~ d  aeq ~ v a   b c  I d 
2 1  1 
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I 
I 
4 

‘I I I ’  
, 3  

d) Use of  Separation symbols . ’ 

a v b ~ c ~ d  aeq ~ v a  b I  c d  

j i  
. : -  t , ’. 

2 1  
t 

. 4- . t 
f. 1 r 

t ;  
*. 

a v b v c ~ d   ~ v a b c l  d 
2 1  

e) Combination  of the separating symbols  with the variable symbols : “ 
A Yes-No-Value  is  assigned to the variables  which indicates whether the variable is situated 
at the .end qf a  sub-expression: .1 

8 

a v b v c  A.d .* 
. -  

\. a e q ~ v a b c d  
2 1  * 

aeq ~ v a   b c  d 
‘ 2  1 

, 
t ’  i 

‘r 

L 

Of all methods,  except a )  , the methods d) and e) require the .smallest investment. L. 1 
b 2 

In  the following mi5thod .Ii$) Separation of symbols is applied. These can  then be easily 
eliminated by method a) . h -  
Once  again  some formulas are confronted  with  each  other in S-representation  and in computerf 
representation : -.. 

S-representation  a  Computer-representation ä 1 

- .  ~ 
I . .  . 4 . .  . 

f 

a ~ b  h a b  

a + b  . + a b  f 

a v b v c v d  

a ~ b v c - d  

(a A b) V (C + d) 

a v 6 ~ c  

a . v  6 - ä  V b 

A 
a V b A c / d  

a v b v c  ~d 

( a ~   b ~ c )  V d 

(a V b A c ) v d  A e 

v a b c d  

- ~ a v b  C 

3 2  1 

v ~ a b + c  d 

5 

2 1  1 

A J ~  6 
2 1  

- v a I i C ä  b 
- 

2 1  1 I !  
I 

A v a b l  c d  
2 1  

i 

~ v a   b c  I d 
2 1  

V A ~  b c  I d 
2 1  

I 
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Representation of the Symbols : - 

Each  single synlbol is  now composed of  several components : 

1) The  type  of the symbol 
Variable or Operation  Symbol, or  blank space, or separating Symbol .. 4- ~ 

2) The  information  whether  a value  has to be considered as  positive or as  negative. ’ 

3a) In  case of a variable the  index 

3b) In  case of an  Operation  Symbol, tha type  of the symbol and the rank. 

An  examfile  €tx.such a Code which the structure 

8! 

* .  . \  . 
.L. 

U = S1.8 ( see  Page /‘f%.cb ) 
. . . .. - . . . - - . - - . . . 

is given  belo,w : 
:\ 

0 1 2 3 u . 4  * 5  6 7 
. .  

I I 

Neg} Variable 
Pos 

Pos 

Neg} I\ 

Pos 

Pos 

Pos 

Negl Pos - 

op-symbol 

blank space 
Separation symbo 

I} Ko + Kg = Index 

Negation- 
information‘ 

F 

I 
Remark : Method d) is not sufficient , it is better  to use method e) 

With the above  used Code the following predicates can be defined : 
I 

Neg ( X ) the Symbol X is  negated 

va  ( X) the symbol X is a variable 

Op ( X ) the Symbol X is a Operation  Symbol i 

Opa ( X ) ’ the Symbol X is a conjunction - or disjunction -Symbol 

Zr ( X ) the Symbol X is a blank  space symbol 

l’r ( X ) the symbol X is a Separation symbol 

Rg ( X ) Rank of X ( in the case Op ( X ) ) 
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Chapter 5 -- 
Chess-Programs 

Contents 

I) Geometry .of the Chess-Board 
*.  . -\ . 

. *  , . 
1) The Given. Systein * .. \. 

2) Propositions on the Location of a  Point 

3) Division of the.Field  into Sub-Areas, ' 

4) Propositions on .the Location of two Points relative to each other 

5 )  Propositions on tlle Location.of three Points relative to each other 

6 )  Formation of Sets of.Points',\ 
" L .  

;r 

.. 

11.) The  Point Occupation 

1) Introduction of the Occupaticin Notation ( AA3 ) 

2) Opcratioas with Occupation Notations ( M 3  ) 

3) Thc Poillt Occupied Notation AA4 

111. The Field Occwation 

1) Introduction of New Structures ( AAS, AA6, "7, AA8 ) 
2) Operations with A 7  ( Power of Occupation ) . 
3) Operations with the Field Occupation 

4) l'rograms on the Freedorn of Pieces to Movc 

5) lhc Conditions for Checkmate and Draw 

IV The Game Situation 

1) Introduction of New Types of Data ( AA9, AA10, All11 ) 

2) Operations with AA9 and AAlO 233 1 
2% " List of Types of Data and Constants 

I 

C 

i 
Konrad Zuse Internet Archive http://zuse.zib.de

License: CC-BY-NC-SA



- 202 - 9 -  

1 
I 
? 

a 
7 

6 

I) Geometry of the Chess-Board 

1) Given System -.. 4.-  t *  ’ 
The chess board contains 64 Squares. From now on they will  be called ‘‘Joints ” . The whole 1 :  i 

area of the board will  be called “ f& ” . . : : ) C  

The location of’any point in the field is determined by two Coordinates, each of which is a 9 { 
= 8-fold vaoable. Therefore, the location of any point can be represented by 6 yes-no-values, 
or ‘by 2 binary v b e r s  with 3 digits each . Then the following notations are equivalent toeach B 

other : * 

4 :  

. ’ \  i -. .. t 1  
Common Notation Coordinates Notation 

LLL 
U 0  

LOL 
L00 
OLL 
OLO 

OOL 

000 

a b c d e f g h  g 7 p J j j j  f 
In the‘ Coordinates notation  the  ,horizontal coordinate is written first,  the vertical Coordinates 
second. Then the following notations for instance are equivalent: f 

C 2  = LOO, OOL 

g6 = LLo,  LoL 

Two new structure Symbols  are introduced : 

A A 1  = S1.3. Coordinate of a  point 
TA 1 

AA2 = 2 X A A 1  Location of a  point 

Several  Operations with coordniates are required. These correspond to the arithmetic rules for 
binary numbers. 

_- - 

I 

( V + V ,   V - V ,  I V - V l )  
0 1 0 1  0 1  

2) Propositions on the location of a  point 

Marginal  Values for PA1 to PA3 

R ( V  ) * R  
V 

a. 2 0 A 
0 0 

I 

C 

C 
Konrad Zuse Internet Archive http://zuse.zib.de

License: CC-BY-NC-SA



- 203 - I 

! 

i 
I '  

. .  

- PA.1 " V, is a  white  point " 

V - V  3 RA.1 
V 0  

0.0 1.0 K 
0 0 

0 0 s o  

- PA.2 '' Diagonal point " 

V " x,;v -( 0 - V  ) = V =b RA.2 
V 0  

' 1  0 '* 1 K o  
' 0  :-.. 0 0 0 

1.3  1.3  1.3  1.3 o S 

-- PA.3 " Corner i o i n t  " 

V = 000 V V =. LLL V V = 000 V V = LLL ' m.3 
, .  

V 0  0 .; & 0 0 0 
. \  

K o  
1.3  1.3 . 1.3  1.3 0 S 

-0 6 * ''X 1  1 . .  
* *_ 

3j Division of the field into sub - areas 

R ( V  ) * R  I i . 2  
0 

A 1.2 

- PA.4 Quadrant of a point 

( V , V .) 3 RA.4 
V 
K 

0 0 0 

0 0 1.2 S 
0.2 1.2 

- P A S  Zone of a point 

Auxiliary  program : 
Ordinate ' s distance  from  the Center 

V 2 4 9 V-4 3 R A S  
V 0  

1.3  1.2 S 
0 0 

8 I 1: < 4  ? (  3-V) '  R A . 5  
0 0 

S 1.3 1.2 

I 

f 
i 
I 

I : *  

L 
t 

i 

I 
f 

I/ 

i 
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PA.6 - 

i Min ( R A.5 ( V  ) , R A 3  ( V  ) )  ' *  RA.6 
V 

S I  1.3 ' 1.3 '. 1.2 
0 1 '  K 
0 0 0 

h 

4) Propositions A n  the location of two Points relative to each other .. ' \. . .  ~ . -  

R (  V -  , V ) = S R "  
1 '. . 

V 
A A.2  .A.2 0 

0 1 0 

:r 
Ya.8 Orthogonal relatign 

. .  
V .   # v A v = y v v ,   = V  "RA8 

V 0  1 0 -l*:* $4 1 0 

K 0 0 1 ' "  1 
A A.2  A.2  A.1  A.1  A.1  A.l . o . .  
- PA.9 Diagonal Relation 

V # V A I V -  V I =Iv-  V I *M9 
V 0  
K 

1 0 1   0 1  0 

A.2  A.2  A.1  A.1  A.l  A.1 o A 
0 0  1 1  

% !  
1 

PA. 10 Knight  relation 

( I V - V l = L r \ I V - V I  = L0 ) V  ( I V - V 1  = LoAIV - V1 = L ) *  RA.10 t 
V 

P m  Queen relation 

0 0  1 1  0 0  1 1  K 
0 1   0 1   0 1   0 1  0 

RA.8 ( V ,  V )  V RA.9 ( V ,   V )  =) R A . l l  tz, 1. 
0 1  0 1  0 1 " , I  

P& M i t e  pawn  can  move T o r  - 1 
v - v = o A [ v - v = L  V ( V = O O L  A v  = OLI,)] 3 m . 1 2  

V '  

P m  Black  pawn  can  move 4 or I. j K o o  1 , 1  1 1 
0 1 1 0  0 1 

V - v = o A [  V - V  = L V ( V = LLO A V = L00 ) ] sRA.13 
V 0 1   0 1  0 1 
K o o  1 1  1  1 

I 
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? 
I 

I 

V l i  
, ? ,  

: I  

. $ 1 
PA.14 White  pawn  can capture / I 

/ v7 ,; 

I 
, ' I .  

'r' 

Iv - V1 = L ( 'V - V  )= '  L 9 U . 1 4  1 ;  
V 0 1  
K o o  I ;  

U 5  Black  pawn  can capture 1: 

. . . .  1 0  
1 1  

b .  
,.L* ' ,  

........... .I ' ,' 1 i; 
l; 

PA.17 The  Points are adjacent' ,' 
* . $ 4  

V A Iv - k*I,'>+lV - V!< L =$ RA.17 
V 0 1  0 . 1  ' 0  1 
K 0 0  1 1  

PA.18 There is a point in knight relation to tlle two  Points given 

signalization of threat to two pieces 
attacked by a  knight 

. . .  . .  .... .......... 

t 
I 

. - I .-L . 

F 

E r 

. .  . - . . . . . . . .  , .. 
Implicit  expression 

( E x  ) [ R A . ~ O ( V , X ) A R A . ~ ~ ( V , X ) A V * V ]  
0 1 0 1  

- .  ! , , .  i Expiicit expression 

! ',', ( V *   V )  A [ R A . l ( V )   - R A . l ( V ) ]  A I V   - V l < 4 A I V - - V I < 4  
. *  V 

0 0 1 1  K 
0 1  0 : .  1 1 0  1 0  

- 
A [ R A . 9   ( V , V  ) -* R8.2 ( IV - V1 ) ] =$ RA.18 

0 1  1 0  I 

i 
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I 

1 

V, and V1  are different Points of the Same color ( R A . l  ) and both the horizontal 
and the vertical differcnces of their coordinates, taken absolutely are less  the,n 4, and if 
the Points are located in diagonal relation to each other,  the difference may i o t  bk"even 
( R8.2 ) . ' 

$ 

W There are .Points located between the two given Points 

Ra.11  ( .-V,V ) A ( V , V )  * R11.19 
'. * .;C). j 0 1  \. 

The given Points are located in orthogonal or diagonal relation and are not adjacent. 

5 )  Propositions on &e location of three Points relative to each other 

Restriction : , .  

( All point locations are different form each pther ) . 
PA.% All three Points lie on a horizontal line 

V = V A V = V * R A . ~ ~  
V 0 1 0 2  
K l l l l  

U 5  All three Points lie  on a vertical line 

V =   V A V =   V ~ R a . 2 5  
1 0 2  

- PA.26 They lie on  the Same orthogonal line 

R A24 ( V,V,V ) V R 11.25 ( V,  V, V ) R 11.26 
0 1 2  0 1 2  

. . .  . . . . __ . . . . - - -  .. -. -- . - . .-.-. . . _ _ _ _ _ _  
P a 7  They lie on the Same diagonal line 

RA.9 ( V ,   V )  ARA.9 ( V ,   V )  
0 1  2 2  . .. 

A[(Pos( V - V ) , P o S ( V - V ) )  , ( P o s ( V - V ) , P o s ( V - V ) ) ] * R k 2 7  
V 

0 0  1 1  0 0  1 1  K 
1 0  1 0  2 0  2 0  

. .. 

C 

1 c  
i 

I 

I 
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P u  They lie on a straight line 
t 

R A . % (  V,V,V) V R A . 2 7 (  V,V,V) -Cer ( 'V,V,V) ' t ;  
0 1 2   0 1 2   0 1 2  .. 4 * .  f 

' I r  

6 :  

*! i P m  V lies between V and V 
0 1 2 : 'L 

1 0   2 1   1 0   2 j  t 

RA.28 (V,V;V A [POS ( V - V )  ? P O S  ( V - V 11 V [POS ( V - V ) + P O S  ( V - $)J 1 
K 0 0  0 0  1 1  1 ' .I B I  .. \ ' .  \ 

%'. . .. 
* R A.29 r i .  ? 

i 

PA.30 V, V, V are locatcd on the edges of an rectangular triangle 
0 1 2  <, 

. .  
V on  thp . . 
0 

* .  I 6 f 

[ (  V =  V ) A I  V . = ? V ) ] v [ (  V =  V)A( V =  v ) ] * R A . 3 0  i 
V 0 1  0 - 2  0 2  0 1  n 

i K 0 0  1 1  0 0  1 1  

6 )  Formation of Sets of Points 

P m  List of the Points located between V and V 
0 1 

. R (  V , V ) * R  P 
V 

Implicit expression : 

A.2  A.2  QXA.2 A 
0 1 0 

f 

I [ R A.29 ( X , V , V ) ] *R A.32 
0 1 

6.2 A.2 8.2 oXA.2 

PA.32.1 Subprogram to PA.32 
List of Coordinates located between two given  Coordinates : 

V 
S 

V 
S 

V 
S 

R ( V , V ) * R A.32.1 
0 1 0 

1.3  1.3 OX 1.3 

v > v  * z  Z-+( - 4 6 )  z - t (  .t 4 6 )  
1 0  0 0  

1.3  1.3 o 
0 

1 '  

V 6 1 - 2  17 + Y  +[ z * P R  1.3  1.3 1.3  1.3 1 3  1.3 1.3 

z 
0 1  1 0 0  *"] I 

i 
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PA.32 Explicit program t 

V 0  1 1 
K o  0 1 

.. 4. ~ 

' 4  

S 1.3 1.3 1 1.3 1.3 

( V , V ) *  ( V , V ) *  '; -J 
.. 0 1 0 1 

1 K 0 1 *'-. ' .  \ 0 

s o  1.3. 1.3.' OX 1.3  1.3 ' 1.3 OX1.3 f ~ 

, z  ) * R  
V 3 0 

OX1.3 uX1.3 oXA.2 

, V ) *  R-* ]i 
2 .. . 

V 0 1  0 0 

K 0 1 
s o 0  0 x 1 3  1.3 oxo:2 : 

P m  List of Points in knight relation to a given Point. - *  

t 

Implicit expression : 

R A . l O ( V  , X 

V 0 

A A2 A.2 A.2 

I 
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I 
5 

U '  j 

,: fr 
( Constructive method  with Variation . .',. 1. t B 

of Parameters ) 
o * z  

V 
1.3 ' S 
1 

. .  

S I  0 I 0  

V 6 z  * z  
0 1 2  4 V 

V b z  * z  

1.3 1.2 1.4 1.3 1.2  1.4 S 
1 K o  
0 2 3  5 

r ;  

i 

L 

*. P 

t 

0 

(Z 2 0  A Z < h O O A Z  > o  A Z  <L000 ) * Z 

4 5 5 6 
1.4 -- 1.4 1.4 0 

f 

/ ' .  f r 
V 6  
K 
s o  0 0 0  0 0 0 1.3 

0 1 2   0 1 2  

z = LLL * Fin z"+ 1 3 z 
1 1 L \ 

!Meaning of the  intermediate  values : 

Z1 = auxiliary  value  for  the Variation of Points 

Z2 = horizontal  distance betwecn V. and  the next  point. 

% = vertical  distance between V, and the next  point. 

Z4,Zs = coordhates of the point. ' 

z6 = " The next point is located within  the field " . 
I 

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA



- 210 - 

The  corresponding Sets of Points for the relations of other pieces  can .be similarily  developed. For the 
following the implicit expressions  are at first sufficient. 

11. The  Point - Occupation .. 4.. 

' 4  

The  Points ( Squares ) of the chess  ficld  can  be occupied by  pieces.  In  Order to specify the state of 
occupation the point  notation is supplementcd by an occupation  notation.  There are  six types . 

of  pieces ( P, Kt, B, R, Q, K.,)"of white and black color respectively.  Any point  may  not be 
occupied.  Thkse'!S.yanations  of  the state of occupation of a  point  can be specified  by 4 Yes -No - 
Values . . '- . .. 

1) Introduction of the occupation  notation " 

;* 
AA3 = s1.4 ' . 

BA3 
. .  

4 * .  I . :\\ 

The Code is  representkd  by a  lisi f- 
. .  

0 1 2 3  

- -  
- -  
- -  
- -  
t -  
t -  
t -  
t -  
- t  
- t 
- t 

- .t 
t t  
t t  
t t  
t t  

Meaning 

not occupied 
' W.P. 
3 .  -, 
\V.Kt. 

- 1  

,_ W.R 
W.B 
'YQ 

- 1  
t]$.P 

L ' W.K.g C- 

,;cI?$Kt ' 

- 1  
P9g.K.g 

&[&.B ' , 

MQ 
C.tS.R 

i 
i 

Th undefmed cases  are excluded. Thus we have the R t 
restriction formula I' 

0 1  
- -  
t -  
- t' 
- -  
t -  
- ' t  

t t  
t -  
- t  
- -  
t -  
- t 

t t  

2 3  

2) Operations  with  Occupation  Notations AA3 : 

A number of propositions  on the components of the occupation  notation V can be derived : , 
0 

v * o  L' occupied " 

V + O A V  

K 3 
V 0  0 " occupied by white"' 

I 

t 
G 

i 

t 
If 

C 

i 
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K 3  O 
" occupied  by  black " 

P m  The  adjacent  Points are under  threat 
4 * .  I 

V A ( V - V )- % 'R* Ai& 
V 0  0 0  

K 2  0 1  
s o  0 0  0 

U 9  The orthogonal lines are under  threat 

V A V * R A.49 
0 0  

pa.50 'fhe diagonals are under  threat 

V A V => R ASO 
V 0 0  
K l o  2 

PAS1 Occupied by a  minor  piece ( bishop,  knight ) 

A V - R A.51 
V 0 0  
K o l  

PAS2  Occupied by major  piecc ( queen,  rook ) 

V A V 3 R A.52 
V 0 0  
K o 2  

PAS3 Occupied by a  minor pieci.a &jor Piece or a king 

V => R A.53 
. V  

K 2  
0 

t 

B 

f 

I 

C 

3 
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PAS4 Occupied by a minor piece or a rnajor  piece,  king excluded. 

V I\ V V V * R A S 4  
0 0 0  

Relations between two occupation notations . ' 

R (  V # . . V  1 * R  
V 'o;.... 1 . 0 

A A 3 ;  ' h3- .. 0 .. 
PA.60 " Occupied by  picccs of Same color ** . 

V *  0 A V:.? 0 A (  V - V )   e R A . 6 0 ,  
V ' O  1 .  . 0 1  
K 

PA.61 " Occupied by-pieces. &different color " . 
.3. 3 

\ 

* .- 

t 
t ' +  

L 

L' B 
t 
P 

pc1.62 " The occupation is equivalent ( if for instance bishop and knight are rated equivalent ) 1 
( @P,( Kt, B 1 , R,Q,Kg ) 

I! [( V , V , V )  = ( V , V , V ) ]  V [ R A . S l ( V )  A RA.51(  V ) ] *  RA.62 
V 

0 0 0  0 0 0  A3 A3 0 A 
0 1 2  0 1 2  K 
0 0 0  1 1 1  0 1 

f 

Comp. 
of 
AA3 

Alternate form of PA.62 

Introduction of a valuation table in the form of a  constant CAO.l. 

T Piece 

0 

P 
Kt 
- 

Ks 
R 
B 
Q 

Level 

valuation 
of 

CAO. 1 

0 000 

1 
OLO 2 
OOL 

000 

5 
OLL 3 
LOL 

L00 4 
OLO 2 

I 
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? 
i 

'I 
L i  $ 

PA.62 
f 

( C r( ':%'%.)) = ( V,  V, V. ) ) ' * R A.62 t ;  
V 

0 1 2  K 
AO.1 ' .. 4 . .  t 

' 1 '3 

6 8  

! 

S 1.3 0 0 0  1.3 ' 0 0 0  : p  
PA.63 V1 is univecally  occupied Superior to V, t 

* 

I 

'.( V, V, V ) < K A.1 ' ( V,  V,  V ) * R A.63 
V 

V 

1 v . Q  0 0 1 1 1  0 

S 1.3 0 0 0  0 0 0  0 

. 1 :  

Ic o i' 2 0 1 2  r i  \. 

3) The " Point Occdpied Notation " 
I .  

R (  V ) + R  
V 

A4 0 A 
0 0 

PA.64 " Occupation is possible " . -  
[ ( V - t---) + V - 

. . . . . . . . . . - . . . 
= 01 A [ ( V  = +--+) + V = LLL] * m.64 . . . . .  . 

V 

A3 A l  A3 A l  0 A 
0.1 1 .o 0.1 1 .o 1 K 
0 0 0 0 

( A white pawn must not be located  on  Points  with the vertical coordinate  zero  and  a  blackf 
pawn must not be located on Points  with the vertical coordinate seven, ). 

Relations  between  two " point  occupied *' notations. i t  
I. t 

R (  V , V ) * R  
0 1 0 

i 
0 

PA.72 Occupation  condition for the move V - V 
0 1  

( V is occupied  and V is not occupied or occupied  by a piece  of the other color ). 
0 1 

V #  0 A ( V = 0 V (  V + V  ) )  e R ' A . 7 2  
V 0  1 0 1 0 

K 1  1 1.3 1.3 ' 

A A 3  A3 0 0 0 
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V 
K 
A 

V = O h  

1 
1 
A3 

'. . . .  
. #  V 

K 
' A  

V 
. K  

A 

V 
K 
A 

L 

-[i, = +--- R A 1 2 ( V ,  V )  

0 0  

62 A2 

-. V = +--+ R A l 3 ( V ,  V )  

._ \. 
0 0  

A2 A2 

= -+-0 RA10 ( V , V ) 

. .  
a o  

1.3 ' .. A2 152 

0 0  

A2 A2 

W 4 9 (  V ' ) A R A 8 (  V ,   V )  
0 

1 a o  
1.3 A2 6 2  

V ) A R A S (  V ,  V )  
0 

1 0 0  

1.3 A2 O l l .  A2 

: 

B1 .P 
# j  

Kt 
L 
P 

C' r 
t 

i 

C 

I 
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i 
? 

V 
K 
A 

V 
K 
A 

V 
K 
A 

V 
K 
A 

between V and . V . 
0 1 

V = +-- RA14( V ,  V) -  
0 

0 

A2   A2  
*. . * .  .... , . 

V ='+;-s. RA15 ( V  , 
0 

.. 
0 0  

A2  A2  

V = -+-0 .RAlO*(. V , 
. .  

. , o  ' 1 
L .  

* .  I . , % 0  0 

A3 

V = --+O RA17 ( V , 

1 0 0  

A3 A2  A2  

0 

RASO(V,  ) R A 9 ( V ,   V )  
0 

1 0 0  

1.3 A 2   A 2  

* RA.74 

" En Passant " capture condition 

V, = point of the pawn 

V1 = point to which the pawn  is  moved 

V2 = point On which the beaten piece  is located 

B1.P 

Kt 
C. 

F 
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1 

i 

'. , '. ,. 3 
I : "  V ' = ' + + t A V =  o L L A V  = hoARA15( V , V ) A V  * 0 A 

0 .* 1 0 2 2  
K 0.1 0.1 0 0 1  1.3 
A A I  A l  6 2  A2 A3 0 

h 

n ( v  = 'V' ) ' A  ( . V  = 0 ) =$ R A . 7 5  L 

C .  I 
2 

V 0 1 .., 1 

A l   A l  A2- A 
0.0 0.0 L . , , I\ 

. P  

K * .  I 

i 

t 
I 

111. The Field Occupation - *  

1) Introduction  of New Structures t: 
f 

n i e  ]ist  of the occupation  notations AA4 assigned to the 64 Points of the chess-field is the 
" field occupation " . 1 

0 

AA5 = 64XAA3 

It is advantageous to introduce  another  notatlon which consists of the field acupation notation, t 
supplemented by the coordinate  notation of the Points. 

The list of  pairs of this point  occupied  notation is of a restricted variability. ( The front elements 
of the pails are constant ) 

A A  6 = 6 4 X A A 4  
B A 6  

V = i * B A 6  
K 
A A  1.6 

i.0 

Alternative formulation : 

. A A 6  = Qz, ( A . A   2 , A A  5 ) 

The  start  occupation is specified  by the constants. ' 

C A 5 ;  ( A A 5 )  and 

C A 6 ;  ( A A 6 )  

I 

i 
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4.. . E ‘  
1 . :  

i 

I 
- C  

In certain Problems, the entire field occupation is not of interest, but only the number of  pieces 
of each  type avahle. j r w  
First a  constant CA0.2, which consists of the list of the different types of pieces, is required. 

. .  . -.. . . .. -. 

Meaning 
-- - . 

- F 
C - - t - - -  . .  Wh.P 

V AO. 2 

Wh.Q. t t t -  
Wh.R. t - t  - 
Wh.B. - t  t - 12XA A 3 A 
Wh.Kt. - +  - I -  

t - - t  B1.P. 
- t  - t  BI.Kt. 
- t  t t B1.B. 

t 
- - +  WI1.Kg. i !  

r 

t - t  t B1.R. I 
t t t t  

BI.Kg. - - - t t -  

B1.Q. 

To the list AA7 can be  assigned  by horizontal  composition 

AA7 = 12XS1.4 

The composition with CA0.2 results in the list of pairs AA8. 

AAS = Qz ( C A0.2, AA7 ) 
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i 

The  state  at the start is represented by the constants CA7 and CA8 : 

C A 8  

C A 0.2 C A 7  

0 1 2 3  3210 

L000 

- t .- - .. OOLO 
- t +'.Y ~ 

t - + * -  

OOLO 

OOOL - - +  - 
OOOL t t t -  

.' OOLO 

t - - t  ;, L000 
- - +  - + - .  OOLO 
- t  t + , ' OoLo 
+ - +  t . : dOL0 

'OOQL 
booL 

+- - - -  - 
I I\ 

..'. . 

+ t t t  
- -  + +  

. 'B 

2) Operations  with AA7 

P a  Development of AA7 from AA5 

R ( V   ) * R  
V 

0 5  A7 A 
0 0 

V 
K 
A 

Meaning 

piece number 

W.P.  8 
WhXf. 

1 B1.Kg. 
1 B1.Q. 
2 B1.R. 
2 B1.B. 
2 B1.Kt. 
8 B1.P. 8 

1 Wh.Kg. 
1 Wh.Q. 
2 Wh.R. 
2 Wh.B. 
2 

N [ ~ ? ( x  E V A  X = * C  
0 AO. 2 

i 1 
A3 A5 A3 1.4 

Propositions  on AA7 

R ( V   ) * R  
0 

A 0 

PA.97 The field  is completely  occupied 

( V = C ) * RA.97 
o A I  o 

PA.98 The occupation.is partialy aS at  the  start  or equal to it. 

V 
K 
S 

W1 

-. . 4.. 

F 

C 

i 
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PA.99 Number of white and black  pieces : 
i .. 
t t 

R (  V )*('R ' ,  R ) '  t i  
V 0 0 1 *. 4 + .  'i 

0 1 ' !  

A L17 1.5 . 1.5 ' ' 4  i 

Ro = number of white  pieces 

R1 = number of black  pieces 

V t V'.+;+.t V t V =$ R A.99 V t V + V + V t V =$ R A.99 . -. 
V 

6 7 8 9 1 0  K o 1 2 3 4  
0 0 0 0 0 1  0 0 '  0 0 ' ;  0 Y) 

PA.100 Number of redundant minor and major pieces  relative to Start occupation. .\ 
R (  V ) - = $ ( ' R  , R ) . .  v I  :7 

1 
I 

p .  L'  I 

i 
A -1.4 I;\ 1.4 t 

* ,  

Ro = redundant white minor and major  pieces f 

R1 = redundant black minor and major pieces 

FPOS ( V-L0 ) FPOS ( V-L0 ) + FPOS ( V-L0 ) -t FPOS ( V-L ) 3 RA.100 
. .  0 0 0 0 0 

1 2  3 4 

FPOS ( V-L0 ) + FPOS ( V-L0 ) t FPOS ( V-L0 ) t FPOS ( V-L ) 3 RA.100 
0 . o  0 0 1 f 

7 a 8 4 L 

I 

PA.101 " Occupation is  possible  with  regard to the exchange of pawns " . 
Detailed conditions 

1) Both kings are  present 

2) Number of the white  pieces Q 16 

3) Number of the black  pieces < 16 

4) Number of white  pawns 8 minus the  number of redundant white minor and major 
I 

pieces 

5 )  Number of black  pawns 8 minus the  number of redundant black minor and major 
pieces 

6 )  Number of pieces a t  least eqal to 3. 

I 

L 

t 
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I 

L 

PA.102 White  is equal or .superior to black in any type of Piece. 
' .. t 

& X 
R ( V =$ RA: i02 ,':\+ 

F ._ 8 
I 
F: 

v I  :7 
0 

A 0 
i 

t 

( v & v )  A ( v > v )  h ( v > v )  A ( V >  V )  I\ ( v > v )  A : (  v > v ) * - p & 1 0 2  
0 0  0 0  0 0  0 0  0 0  I 0  0 

0 6  1 7  2 8  3 9  4 10 , - 5  11 

PA.103 Corresponding  specification for black. ' 

PA.104 ,Inivocal superiority of white  according to the valuation of pieces in table PA.62 
- 

f f f  

Since there is  always only one king of each color present, the  other 5 types of pieces 
only are  relevant : i 

P, Kt, B, R, Q , 

These  are  divided into four value  classes : 

P a 
Kt,B  b 

R - C  

Q d 

For  the values a, b, C and d only  the following  is fned 

a > O  
b-a > 0 / 

I 

C-b > 0 
d-C > 0 

/ .  

r 
According to  this detqmination superiority can  be identified  in some  cases. ' ' f J' 
If (Y, P, 7, and 6 are sucplus,  respectively the types of pieces a, b,  C,  and d in wllite are 
deficient  then  the valuation of white produces the  following  result., 

I 
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x = a X a  1 ;  
+ P  X a + P X ( b - a )  
+r. X a + -y X ( b - a )  t -y X (C-b) ' 4  

4-6 X a + 6 X ( b - a )  + 6 X (C-b) t 6 X ( d - c )  

P '. 4 . .  

' 1 . r  

6 ;  

X = ( &  + P + - y ' + 6 ) x a  [ 
+ ( P + T.+ 6 ) X ( b - a )  1 i 

'.(.$,+ 6 ) X (C-b)  I ?  

' i  
C 

* ' -% .. X (d -c )  t 

' t  i 
I _ .  

If X > 0, then  at least Une of the following expressions lnust be  positive  and none of them i I 

is allowed  tit  be  negative. t 
( c u + ' B + i . t S >  L 

( P + T. ,  + s . j  C. i! 

i 
f 

I 

(- Y ' 9  6'nJ 
6 * * -  

t 
. V  

D i s  results in the following program : t 
C 

L 

3 

PA.104 . *  

R ( V ) * R A.104 
V 

0 0 0  0 

v - v * z  . 

A7 0 A 
0 0 

z + V - v * z  
v o o o o  

3 9  K 
0 0 

z t v t v - v - v = , z  
0 0 0 0 0 0  

V /  K 1 2 7 8  

z + V - v * z  
v o o o o  
K 0 6  

l o  0 

z < O * F i n  z > O 4 V R  
0 0 0 

PA.105 Corresponding  program for black  exchange of : 

V ,  V V ,  V V ,  V V ,  V V ,  V V ,  V 
0 0 0 0 0 0 0 0 0 0 0 0  

o 6 11 4 1 0 5  3  9 2 8 1 . 7  

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA



$ 

- 222 - I 
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* I  
5 

3) Operations with'the Field Occupation ( AAS, AA6 ) ' .  i 
r *. 3 t 

The following  programs  sometimes contain repetitions and implicit partial expressions. Consequentlyj f 
they do  not always Show the most convenient solution for computation. * ' 1  4,. . r 

' 4  i 
1 F  

V 
K 
A 

1 ' F  ;+ ) * z  0 
A2 A3 ' A i  ' 6 4  I A2 A3 A2  A4 

L' t 
RA.73 ( z , z '1 .) ,G ( RA.74 ( z ., z ) A ( z # z ) )  2 

0 1  1 0 i 

A A4 A4 04 A4 0 0 t 

V 
L .  

0 -1 * , ''k 

K 1.3  1.3 f 

A [ R A 1 9 (  z , z ) ( x E R A 3 2 ( z ,  2 ) +  V =O)]=+RA.l28 

,,C'-' % 

V 0 1 0 1  0 

K 0 0 0 0  X 
A A2  A2 A3 

V, = field occupation ( AAS ) .' F 
1'1 = point  from which the move  Starts ( AA2 ) 

V2 = point  to which the move  is  made ( AA2 ) r 
Z, = the point  occupied  notation ( AA4 ) 

assigned to V1 h 

t 

Z1 = the point  occupied  notation ( Ac4 ) 
assigned to V2 

X = point  located between V and V ( M 2  ) 

Between V and V either the move condition RA.73 is true or, if V and V are 

occupied  by  pieces of a different color ( Z rt. Z ) the  capture  condition RA.74 t 

1 2 I 
1  2 1 2 

1 2 
1.3 1.3. 

. -  . 

is true and, if there are Points  located between V and V ( RA.19 ) , then these ( RA.32 ) 
must be unoccupied ( V = o ) . 1 2 

0 
X 

PA.128 does not take castling into consideration since this cannot be supervised  simply On 
the  grounds of  field occupation. I 
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PA.129 '' The piece located in point V guards the point V or a t tackdi t .  ( It can capture  the 
piece  of  the opposite -color, iflthere is  any located 2 m V ) . 
As PA.128 , however, instead of  the expression 

2 .. 4- - f 
'! i 
' 1 :  

R ~ . 7 3  ( z , 2 )  V ( R A . 7 4 ( z  , z )  h ( z * 2 ) )  
0 1   0 1  0 .1 

1.3  1.3 ' 

is 'su,bs\ituied - 
%'-. 

RA.74 ( Z ', ) 
.. 

0 1  

PA.] 30"A certain biece exists, which can move to V/ conditionally " ( possibiy restricted because 
of check uncovered : 1 

( Ex ) [ X E V A X * 0 A X A R Al28 ( Spl ( V ), X, V )] * R  A.130 
V 0 0 1 0 
K 
A . A 4 ,  A6 ,A3 0 A5 ' ~ 2 ~ 2  

- 1  
1  1.3 0 

i 

t 

R 

PA.13  1 As PA.130, however, for black 

X instead of X * o A iT 
K I 1.3 1.3 

F 

Pa132 " The  point V is conditionally  guarded, or attacked by white " . . 1 t 

As  PA.130, however, RA.129 instead of ,M.128 

PA.133 As PA.132, however, for black 

X instead of X * o A X 

. KI 1 3   1 3  

If V is occupied by black, then follows : 

RA.130 - RA.132 

1 

If V is occupied by  white , then follows : 
1 

RA.131 - RA.133 

The Same is true, if V is  occupied  by a  minor or major piece. ' 

1 
PA. 134 " The white king is in check " 

Supposition i The  occupation  corresponds to PA.101 
I 

C 

3 
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R ( V ) =$ R 6.134 
V 
A A6 0 

0 0 

X ' [  X E  V A  X = ( --+-)I* Z 

V 

A A4 46 A4 
- 1  K 

0 0 

PA. 135 " The blatk. king is in check " 
*.  . \  

.- 
As PA.134,  however X = ( ---++ ) 

and PA.132,  instead of PA.133 
:* 

I 
i 

? 

R Al33 ( V J ) *  RA134 '* 
0 0 " 

A6 A2 0 

I 

0 j 
[ 

t i  

PA.136  The field is transformed into  the field Ko by the move V - V . 
b 

. .  1 2 .' t 
Supposition : Moye V., - V is allowed . 

.. . !In2 2 

R ( V , V J V .  ) *  RA.136 
V 

A6  A2  A2  A6 A 
0 1 2 0 

z * R A.136 
V 0 0 0  0 0  

K 
A A6  A6  A6  A6 A3 A3  A3 

PA.137  The field V is transformed into  the field Ro  by  en-Passant capture 
0 

R ( V   , V  , V  , V   ) * R  
V 

A6  A2  A2  A2 K 
0 1 2 3 0 '  

Supposition : 
R A 7 5  (VJ; J :I;'J 1 

V =$ z z =$ RA.136 
o *  ;J;l o *  ;J;l zI;l =) z$.l 

V 
K 

0 

A4  A2  A4  A2  A4  A2 A 

V 0  

A6 A6 A3 Lu A3 A3 A6  A6 A 
K 

0 0  0 0  

The program  PA.140 to PA.143  correspond to the programs  PA.130 to PA.133 : but 
the case of a check  belng  discovered  is  excluded. A meaningful occupation according to ! 

PA.101  is pre-supposed. ' 
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? 
I 

# 

R (  V ,  V )  * R  i $ I ( >  

0 0 1  
' K ' 1  A6 A2 o . .  . ' 1. 

t 
PA.140 A white piece exists which can be  moved to V without  a  check resulting ( if a black  piece is t f 

( 
V 
K 
A 

V 
A 

PA. 14 1 

PA.142 

PA. 143 

1 

located there, this can be captured ). 

The program must  contain  the  condition,  that  a  white piece  exists  which can be  moved to 
V ( PA.130 ) 
1 
By the c.ondition, that in the game Situation after  the move . ' \  - ' .  h . 

%'. . 
'' RA.136 ( V , X , V ) 

' ' v l  0 1 
. K  0 
;* 

the white arig is nbt in check the case  of  uncovering check is taken  into  account. 
The formula is set yp  fxst without regard of  en - Passant capture. ' 

. .  . I  . , E V A  x * 0 - A  X A RA128 ( Spl ( V),x , V )  i 
0 

i 
0 1 

- 1  1.3 0 E 
t 

A4  A6  A3 0 A5 A2  A2 
- "  

A RA.134 ( RA.136 ( V , x , f 
0 

A6 A2 A2 P 
A 3  PA.140, however, for black 

X 

K I 1.3 

R ~ . 1 3 5  instead of Ra.134 

instead of 

r 
t 

a 

" The  point V is  guarded by  white or attacked " . ( The  guarded or  attacked piece  is not 

arrested. because of uncovering check ) I 
As PA. 140.0, however, RA. 129 instead of RA. 128 

As PA.142, however, for black 

1 

. .  

t a 

X instead of X = O  A ji 
K I 1.3 1.3 

R~.135 instead of R~.134 I 

Regarding the  identity  of  the programs Ph.140 and Pa.142 , respectively P~.141 and P~.143, 
the Same is true  of  the  programs Pa.130 and P~.133 (page 2 2 3 ). 2.23 

J 

f 
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4) Programs on the Freedom of Pieces to Move 

Supposition : V is  occupied 
1 

R ' (  V ,  V )  * R  
V 

A5  A2 0 A 
0 1  0 

PA. 144 The piece located in V can  move conditionally ( possibly it uncovers check ) 
'1 '. .( \ , _  . .  . ..'. . 

( Ex ') R ~ 1 2 8  '( V , V , X ) =$ R ~ . 1 3 2  
V 
K 

0 1  

A A2 [ '" A5  A2  A2 ] ' 
* -  1 

PA. 145 The piece  1ocated.jp V 'can move without uncovering  check. 

V Nr( V)*  0 :*- V$* z 1 
K 

4 
. :\ 

* .  I 

. V  

A A5  A6  A3 A2 A3 

I t  
i 

V 1  0 1  . o  1 
K 3  
A O  A5 A2  A2 A6  A2  A2 

0 1  0 1  
.K 3 
A A6  A2  A2 

V, = start Geld occupation 

Zo = start field occupation,  supplemented by point  notation 

V1 = point to  be investigated 

X = point to which the piece located in V may move. 

RA.136 ( Z, V, X ) field occupation after the move 

The cases, that V is occupied  by whitet Z ) and that V is occupied  by black(Z) must 

1 

0 1  i' 

m t  - I <  
1 'L ... 1 1' 1 1 

3 3 
be separated. 

, I 

C 

t 
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! 
I 
5 

L 1  

PA.146 The  piece locsted in V can bc conditionally moved without being attacked in the new location ' z : 
1 

(possibly it uncovers  check). 

A5 A2 A3 
- 

R ~ 1 4 3  (RA136( z ,  V ,  
0 1  

A6  A2 

t .* 
. .  

. .  * . 1'  . , "b 

PA.147 'Ihe piece located in V can move without uncovering check and without being attacked in the I '  
1 R Position. - C  

PA.147 results from a  combination of PA.145 and PA.146 1 
N r ( V )  * z 

V 
K 

0 0 

,. A5  A6 A A3 A2 A3 

RA128(V , V  , X  ) ~ = 4 ( R A 1 3 6 ( z  , V  , X  )J 
0 1  0 1  

A2  A2 Ale I A6 A6 

I R~143 , (   R~136  ( z , V , X )) 
'i-..,--.. < .  

0 1  

L A6  A2  A2 -- -. -. - 

V 
K 
A 

R ~ 1 2 8  ( V  , V  , X  ) A (RA136(~  
0 1  0 

, j . ~ 1 4 7  / -  , 
0 

A6 A2 I I 

I 

C 

C 

V 1  
K '3 
A o  

V 
K 
A 

A5  A2  A2  A6 

A R ~ 1 4 3  ( RA136 ( z , V , X )) 
--- 

0 1  

A6  A2  A2 L 
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PA.148 Tlle whitc king can move without getting into check. 

Supposition : Occupation  corresponds PA.101 

R ( V ) =$ R ~ 1 4 8  
V 

A6 0 A 
0 0 

V 
K 
A 

V 
K 
A 

X' ~ ~ E u A  X = --t- * z  1 

I 

R ~ 1 7  ( 2 , X ) A X  = 0 V X I\ R ~ 1 3 3 (   R ~ i 3 6 ( V  , z , 
0 0 0  

0 0 1 '  1.3 
A4 . .  A2  A2  A6  A2  A2 

L. t 
\ t 

4 R ~ 1 4 8  ; 3 .  . . '.% 

V. = field  occupafi6k'at the  start 

Zo = point  occupation  notation  for the white king. 

" There is a  point X adjacent to the point of the white king ( .) , which is not occupied 
( X = o ) or which is occupied  by black ( X ) and in the resulting field occupation f 

1 

i 
i 

I 
- "  

3 
( RA.136 ( ... )) the  point X is not attacked by black ( RA.135 ) - 

PA.149 As PA.148, however, for the black king. 

X = --t+ instead of X = --+- 
RA.132 instead of RA.133 

PA. 150 " There are no white pieces present  apart  from the white king or these cannot move ". 
( Supposition for " Draw " ). 

R ( V ) =) RA150 
V 

A6 0 A 
0 

V 
K 
A 

( x ) x E V A X / . O A X * - - + - A / \ X + R A ~ ~ ~ ( S ~ ~ ( V ) , X )  i 0 0 

A4  A6 A3 0 65 A2 1 1 1  1.3 0 

PA. 15 1 As PA.150, however, for black 

X /. -++ A X instead of X * o A X /. --+- A X 

KI 1 1.3 1  1 1.3 
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PA.152 A certain piece exists, which  may  move to a  point between V and V without 
1  2 

uncovcring  check." ' 

R (   V ,  V , V  ) *  R ~ 1 5 2  [- RAS (V ', V .) V  RA^ $, P). , 
V 

as A2  A2 0 A 
0 1 2  0 0 1 '  0 1  

' 4  

V 
K 
A 

Supposition :*V and V are iocated on a straight line. 
.. 0 1 

- 
X E RA32 ( V , V ) A RA140 (V , X ) 

0 
\. 

0 1  0 

0 

114 *&i A2  A2  A2  A6  A2 
4 

PA.153 As PA.132,  lioivever; for black . .  
RA.141 instead of'"W.1,40 . , "\ 

5 )  The conditions  for " Check"  and " Draw " 

. . .. 

V 
K 
A 

V 
K 
A 

V 
K 
A 

V 
K 
A 

V 
K 
A 

C '  

V = Field occupation 
0 

R = white  king is mated 
0 

R = white king is drawn 
1 

0 0 

1 
A4  A6 & 

9 ( R A 1 2 9 ( V ,  X ,  z ) A  X ) * z  
0 0 1 

0 0  1.3 
A4  A2  A2 0 0x114 

(Z = O . ) v  RA 148 ( V ) *  Fin 
2 0 

1.2 as 

1 2 

oXA4  1.2 

R A 1 5 0 (  V )*z 

o o o o o o o  A6 

4 3 4 0 3 4 1  0 

z A Z *  R z I\ Z *  R 

. .  

1': 
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Meaning  of  the. intermediate values : 

Zo = point occupied notation of the white  king 

Z1 = list of the point occupied notations  form which the king is. attacked. ' 

.. 4.-  

' *  

Z2 = number of  pieces attacking the, king 

Z3 = " The white  king is attacked by double  check ( Z Z 2 ) , 
I ,  . - \  . -  2 

or i t  kanheither capture the attacking piece, nor can it be guarded  by the interposition 
of a piece beiween the k n g  and the attacking  piece ". I ' 

Z4 = no Piece. other  than the king  can  move. ' 

;* 

PA.161 As PA.160, howeier,  foI.black , 

\ 

X = --tt in&ad,';sf X = --+- 
* ._ 

R C\ .143 L6 
" R A  -142 

R~.153 '6 
" R~.152 

R A  .151 6' '' R~.150 

f 

f 

V. The Game Situation - 
f 

1) Introduction of  ncw Types of  Data 

The freld occupation  information alone is not sufficient for the specification of  the game  Situation. 

The following supplements are required : 

a) Information as to whether  white or black  has to move 

b) Information  about  the  execution  of castlings 

C) Information, as to whether it is allowed to capture en-Passant 

To a) This is specified by a single  Yes-No-Value. 

To b) The  conditions  for castling  are the following : 

cy ) The  points  between king and rook must be unoccupied. ' 

P ) The king may not pass  any point which is under threat by the Opponent. 

7 ) Castling  is not allowed if the king is in check. I 

6 ) The pieces  involved in castling must not have  moved in so far. ' 

i 
Konrad Zuse Internet Archive http://zuse.zib.de

License: CC-BY-NC-SA



I 

- 231 - ! 
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I 

I 
i 

M ’  

The  conditiona (Y, P, 7 are functions  of the field occupation.  For  the  condition 6 the j 

entire course of  the game in the calculation every time, four Yes - No - Vdues are 
howledgc  of the Course of the game SO far is necessary. In- Order to avoid  inc]usion of  the . 

evaluated, which indicate whether  white or black  is  allowed to execute king’s side Or I ;  
queen’ s side castling.  These four Yes - No - Values  are components  of the  gme, situagon. f i ‘  

T0 C) T h i S  information results from  the previous move. It is sufficient to specify the point  to :, 1 :  
which the piece  was  moved.  This information ( AA2 ) must also  be a component  of the : b  
game  Situation. 6 :  

Correspondingly the following structure can be  asslgned to  the entire “ game  Situation ” : F 

‘.A,br‘q =-( AA 5, So, S1.4, AA 2 1 
The  componedts have the following’meaning : 

Ko ( , A b 9  ) = A A S ,  field occupation 

K1 ( A A 9 ) :,,= so, 

K 2 .  ( A A 9 )  = .SI .4 Castling information 

-1.. 

- ,“ white  has the move ” 
. .  + “ black has the move ” 

4 
* .  , 

In detail. * 9 . ._ ’ h p  

t 

t f  

L 

*. 1 
t 
i 
i 

K2.0 8 = SO “ white  may  execute queen’s  side  castling ” t 

m.1 = so W I1  I 1  
h g ’ s  

‘I B 
- L  

K2.2 = so “ black I’ I’ queen’s I‘ 

K2.3 = So 11 I1  11 

- . .  _ _ .  . - -  - h g ’ s  Ir i . . . . . . . . . . . . .  . . . .  ... _ ~ _  .... _ _ _ _ _  - -  -. - _--- __. 

.. . . . . . . . . . . .  - . .  . . . .  . . . .  f ._-_I- 
K3 ( A A 9 ) = A A 2 point to which the last piece  moved. At the start and  after  a castling t h i s  

is Zero. D 

f The  start Situation is specified by the  constant  C A 9. 

Here again it is advantageous to introduce  the  data  structure M10 in  which  the  component AAS is i t  
replaced  by AAS ( field occupation  with specification of the Points ). 

, f  
C A 9  =(  CA5,- ,++*,0)  

A ~ 1 0 = (   A ~ 6 , S o , S 1 . 4 , A 1 ? , 2  ) 

The  start Situation is specified by the constant I . .  
C ~ l 0 = (  AC6,-,+++t,O ) 

For the  data A A9 and AA 10 various restrictions apply, since not every  Variation is meaningful i 
see PA. 192. 

I 
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A move is specified  by the following data : 

a) Normal moves : 
. .  

ol) Point  from which the piece  is  moved 

ß) Point to which the piece  is  moved . . 4.. . 

b) Castling : Queen’s  side  or  King’s  side 

C) En-Passant cappre: information as to whether  capture is executed j., ; 
To a) It 5s u s u d  to mention the moving  piece and to mark thc case  of capture ( X ). Sompt ime i , 

the capiurd-piece is reported too. 
I ?  

The case of announced  check is reported specially. I \  
These supplementary  data are redundant since they result form the game Situation. k 8 

C 

I 

t 

To.  b)  Castling isiFormally  marked by  Special  symbols. In principle it is sufficient to mention  the 1 
Points  between which the king  is  moving.  Since .only in  case of castling  is the king  allowed L . 
to move  over two Points, this fact is sufficient specification.for castling. C. Y e 

t To C)  If the captured gikce is’keported in any  case, then  a Special specification is superfluous. . , 1 - ._ ; 
Two types of move data will  be  used : 

The  concentrated move data : AA.ll 

This contains  the necessary data  only . 1 
A A l  = ( A A 2 , A A 2 , S o  ) 

Meaning of the  components: 
F 

KO ( A A 1 1  ) = A A 2 , point  from which the move Star t s  

K1 ( A A  1 1  ) = A A  2 ,  pointtowhichthemovegoes I : 

K2 ( A A 1 1  ) = So, “ Capture  is  executed ” . 
K2 is only relevant  in the case of en-Passant capture. The specification of castling is established by 
the following data : 

t 

a)  queen’s  side wlute castling ooo,Loo/ooo,oLo 

b)  king ’s ” 
W , 99 ooo,Loo/ooo,LLo 

C) queen’s ” black ” LLL,Loo/LLL,oLo 

d)  kings’s ” 

As weil as the movc data AA.11 it is possible to introduce  extended move data M.l2:‘,’but this 
will not be dipssed. 

9% 99 LLL,Loo/LLL,LLo 

I 
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2) Operations with AA9 and AAlO 

PA.132 '' The game  Situation is mcaningful " 

The following conditions  must be satisfied: P .. 4. .  

' 4  1) The positions of the pawns must satisfy the conditions of PA.64 ( Z ). i 
' I !  

1 
2) The number of the various types of pieces must satisfy the conditions of # ?  

PA. 192 

5 )  If a-  king is in.check then its color  must be equal to  the color which has the move L 

< ; I .  ;* - 1 ' '  # 
6) If a kingor a rook is not in its starting Position  then the  conesponding  components C 

of K2 ( AA10.) must be negative ( Z ). 
& 6 

7) If K3 ( AAlb )'is equal to Zero, then the corresponding  point of  the field must'be ; 
occupied  by a piece .of the  color which  does not have t h e  move ( Z ). 

7 i .~ 
f 

With PA.192 not all impossible  cases  are excluded. If for example 'at the Start knight  and . 
bishop are exchanged,  then this fact is not compatible with the rules, but  it is compatible 
with the above  program. L 
The condition  for  two bishops either white or black  is omitted. 

1 

( X ) (  x ~ V + R ~ 6 4 ( x   ) ) e z  

0 K 
2 0 1 V 

R ~ 1 0 1  R ~ 9 6 ( S p l ( V  )) * z 

A [ A7 A5 :6 ] 0 A6 A4 o 

X'( X E   V A  X = --+-)*Z X ( X W A  X = - - + + ) *  Z 
8 

V 

b4 A6 A3 L34 A4 A6 A3 A4 A 
0 0 1  K 
0 1  11 0 10 

V 
K 

0 

A 

( X  40 A j z  A RA129 (V , X , z * z  
V 

1.3 , o o o K 
0 11 13 

0 &i A2  A2 1 .n A 

F 

C 

i 
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I 

( Z  = o v Z  = o  ) * Z  ( Z < h  A Z < L O ) * Z  
V 

1 .n 1 .n 0 1 .n 1 .n 0 A 
K 

12 13 4  12  13 3 .. 4 - .  

, 
'! 

( 
V 
K 
A 

( 
V 
K 
A 

( 
V 
K 
A 

V = t-+-) * z 

C13 0 

o.(ooo,ooo)! 1 

( 
0 14.0 

I .  

. .  
4 

V = t-tl.) +\z ( 
0 L r4.2 
o.(ooo,LLL).1 
A3 0 

1 
0 0 

V = --+- ) E, z 

o.(ooo,Loo).l 
A3 0 

0 14.1 

V = +-H ) * z 

o.(LLL,ooo).l 
0 14.3 

A3 0 

t 

r i  f 

t t  
b 

L 

E 
t 

i 

. .  .---- . _. _ _  . . . 
( V  =--t+) * z ( V = +-I+-* z 

.. . ~ . - ._ - *  __-.-I_ . - . , ,_-_ . . ... .. . . 

V 0 14.4 o 14.5 f 
K o.(LLL,Loo).l o.(LLL,LLL).l f 

A A 3 '  0 A3 0 

(V +z A Z  ) A (  V + Z h Z  ) A (  V +Z A Z  ) A (  V +Z A Z  ) *  z I 

- 1-  

V 

A o o o  0 0 0   0 0 0  0 0 0  0 

2.0  2.1  2.2  2.3 K 
o 14.0  14.1 o 14.1 14.2 o 14.3 14.4 o 14.4  14.5 

t 

=+ Z Z ~ Z A Z A Z A Z A Z A Z * R  
V 0  7 1 2 3 4 5 6 7 0  
K 3  
A A2 0 0 

Meaning of the intermediate values : 

To PA.192 : 

0 0 0 0 0 0 0 0 0  I 

z1  to  z7 Conditions according to  Page 2 '3 3 

'1 0 point occupied data of the white king 

'1 1 
L1 LI 1L 'LL 

l1 black " 

z1 2 number of pieces attacking the white king 

'13 
L1 bL 1L L* black " 

I 

'14.0 to '14.5 Information as to whether rooks and kings are in Start Position. 
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PA.193 Possibility of castling for white 

R (  V ) " (  R , R )  Ro= queen's  side castling possible 
0 0 1  
Al0 0 0  R1=  &ng's " U 46 

V 
K 
A 

V 
K 
A 

V 
K 
A 

A W  = 0 ) A  RA133 (V , ( 0,2 ))A m , ( V  , ( O,3 1) ' Z 

V 

A3 ' .A6 A6 0 A 
0.(0,3).1 . 0 0 K 
0 4 0 ' 0  0 

. .  I i 
* . :\. 

( V  = --C- ) A '  RB.133 (V , ( 0,4 )) =) z 
1 V 0  0 

K 
A A 3  A6 0 

0.(0,4) 0 

( V  o ) A (  V = O ) A (  V = +-t- ) 
0 0 0 

0.(0,5). 1 0.(0,6). 1 ' 0.(0,7).1 
A3 A 3 .  . .  A3 

h (V , ( 0,s )) A i?Äi% (V , ( 0,6 )) * Z 

0 0 2 
8 0 

A6 A6 0 

( 
I 

t 

t 

i I  
1 

Z A Z A V J R  
v 0 1 0 0 1 2 0 1  

Z A Z ~ V ' R  

! A o o o o o o o o  
2.1 2.0 K 

.- PA.194 Corresponds to PA.193, however for black 

PA.200 Development of the new I .game Situation form the previous  game Situation and  the move 
notification: 
Supposition: meaningful game Situation and move  allowed. 

R( V , V ) ' R A 2 0 0  
V 

AI0 A l l  Al0 A 
0 1 0 
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The program has several  Parts: 

a)  Normal  moves,  according to PA.136 

b)  En-Passant capture: 

t 
T .  ... 

’? ‘ 1  
The criterion for this  is : 
The  moving  piece  is a pawn.  This  moves two steps straight ahead and is captured. 1 

As well as tlle  normal  Variation of  the game  Situation  by the moving  piece, the  captured 
piece must  disappear  from the field. 

*:\ .. 
C) Castling ‘ ; - -  . 1 

The criterion for this is: 
l l le moving  piece  is a king and this moves  sideways in its rank two Points. The color of the 
king  and the direction of its move speciQ the type of  castling. As well  as the  normal 
Variation  of‘the  game  Situation  by the moving’king, its Variation  by the participating rook t 

.- i 

* .  
has to be  observed. . 

:2) Notification, whether-white d( black has  the move ( V ) 
. V  ? L 

3) Development of information as to whether castling is allowed: 
The data V is tranferred, if the moving  piece is neither a  rook nor a king. Otherwise the 

2 a 
L 

corresponding Variation  has to be performed. 

4) The third component of R results form the point  to which the move  was executed. 
0 

PA.200 

V *, z 
V 

A3 A2 hq A3 A3 A2 A3 A2 A6 66 A 
0 1 0 K o  

0 0 

Z = - - t - A (  V -V =LO)? 

V 1  1 1  0 

K 1  
A A 3  ’ A l   A l  A3 

1.0 0.0 

normal moves F 
t 

i 

En-Passant 
capture 

i 
I 

Wh.Q.side 
I Castling - 

Wh.Kg. side 
. castllng 

I 

C 

i 
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? 
I 

z = - - t t h (  V -V t-tt * i 
V 1  1 1  0 

K 1  
A3 O I  A A 3  A l   A l  A3 
(3 97). 1 0.0 1.0 (0971.1 

V A z = (( 0,7 ), +--++ ) h z t ---++ * R 
V 0  1 1 0 

K 
A o  A4 A3 I) 

2.2 1 2.2 

V 0  0 0 0 1 0  

K 0 1 1 1 3 :  
A 116 A6 o o 6 2  A2 

Alternative representation of PA.200 
Extraction of the " move  analyses" as a Special program. 

*. 4.. 

Bl.Kg. side 
Castling 4 %  

P 

' 1 :  
' t  i 

Wh.Q. side 
Castling t i  

' . !  

t 

Wh.Kg.side 
Castling 

. C .  

B1.Q. side 
Castling 

Bl.Kg. side 
Castling F 

I 
I 

PA.201  Move  analyses 

RO = Moving piece 

R1 - - " Normal move" 

C 

i 
. I  

I 
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; 
*. { 

Wh.Q.s.C. ‘ .  

+ 

. .  R4 
R2 = “En-Passant capture” -- ’ $  

R3 - - “ Castling ” -t wh.Kg.s.c. j f  t r i  
‘ 5  ’ I r  R4 = Type of Castling 

B1.Q.s.C. 
B1.Kg.s.C. 

t- ‘. 4..  f 

tt i 
* C  vy 

€ C 1  :\ 2 4 , 1  4 Q 

V * Z  V - V * z  V - V * Z  z * R  ? ) i !  
1 0 0 0 1  

I ?  

i 
1.1 0.1 8 1.0 0.0 * 1  0 K 

1 2 ’  ” 1 1 1  

A A6 A l l .   A 4  A3 A3 A l   A l  8.2 A l   A l  8.2 
I 

‘ \  .--. ,. . .  
*’. . .. I 

Z = t - - O A (  Z = 2 ) A v 4  K. t i  
‘t 

V 0  2 1 2  

A A 3  I . 8.2 0 0  
. .  

V L=--+o A IZ[-’’.=,:] ; I -  T, [ -I-* R ( z , z ) *  

3 0 1  i i;;i “I - *  

K .  
A 6 0 0  0 t 8.2 0 

. 
1.3 o d 

- -.. 

R A R * R  
V 2  3 1 t. 
K 
A o  o o 

f - ,  
PA.202 Development of the new game Situation fonn the previous Situation with the aid of 

subprogram PA.20 1. 
It is true : PA.200 - PA.202 r 

R (  V ,   V )  * R  
V 

A l 0   A l l   A l 0  A 
0 1  0 

The Variation of the various  cases of castling is represented by a combination of the meaningful 
values of the Points involved in two program constants Cpo and  Cpl !! 

I 
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t 

f 
I 

? 
I 

* >  j 

PA.202 

v 4 z  
V 0 0  
K o  
A A6  A6 

0 1 
0 1 0 

A3 A2  A4 A 3   A 3  A 2  A 3  A2  

R A  201 (z , V ) *  ( O , O , z ,  z, z ) 
V ' . , ..Q, - 1  2 3 4  
K . .  X ' .  .'. . 

' A  ' A6 A l l  
.. 

0 0 1.2 

. . . _  . .  

i ' W  
V 
K 
A 1.2 

z * R  
V 0 0  
K 0 

A3 A2  1.2 I o A3 A2 1.2 

C 

- V h Z = (' cp, (+,-,+,V )) A Z = ( -,-,+Y ) * R 
0 '  1 0 0 1 0 

2 i  i ' 1  1 1 
- o A4 A2 0 A3 0 O I  0 2.i 

- 
V * R   V - R  
0 0 1 0  

1 1 1 3  
A I A6   A61 o o I A 2   A 2  

PA.203  Superversion of the game 
" The move is allowed" 
( compatible  with the rules ) 
Data  for  check  mate and draw 

V0 = given  Situation 

V1 = move 

I 

1 
t 
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8 

RO 
- - " the move  is  allowed " 

! 0 t 
R1 = new Situation 

.. 4.. t R2 = checkmate ' 1 ,$ 

R3 = draw k b  
t 

"he progrim is composed of the following  Parts: ! 

1 
I ,  ; 

to the color, which  did not have the move 'V 1 

1)'Move  -analyses according to PA.201 ( Zo to Z4 ) 

2) Investiga&i  as to wllsther the color of the moving  piece  has the move 

3) Investigation  as to whether the move  is allowed 

. .  \ 

I 

a)  normal  move ( Z1 ) 
b)  en7passant. ( Z1 1, Z12 ) 
C) Castling . 

*\ 

L . .  
C. B 

L 

4) DevelopemWRlbf 'the '&W game  Situation according to P.202 

5 )  Investigation for chekkmate or draw, f 
The  condition , that sequences of  moves  may only be repeated twice at the most, is not f 
contained in PA.203. This can  only be supervised  by registration of all moves ( the whole 
Course of  the game). 

* I  

i a  ! &  

f 

. *  

f 

I 

F 

C 
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PA. 203 

RA201 (V , V ) =) ( z , z, z, 2, z ) 
V 

' A6 Al l  a3 0 0 0 1.2 A 
0 K 
0 1  0 1 2 3 4  . 4.. - 

'! 

128  (Spl  (V ), V , V ) =) z 
1 1  

K . o  0 1  
A o o  . Ci5 A6 A 2   A 2  o . .  

0 3  
1 0  0 1 0  6 

K 1 0 3  
A o  0 A2  A2 o A2 . A2 A3 0 0 0  

Z S  ( v + m l 4 ( V   , v ) ) h ( V - + m 1 5 ( V   , v ) ) ~ z * ~ ~ z - v * z  

121 
3 1  

Z*r(v z + RA193  (V )) A ( I\ z -+ RA193  (V ))- * z 
V 3 0 4 0  0 0 4 1  0 

0 A o o o o  Al0 0 0 0  Al0 
1 1  1 1  K 

' 13 

A(v A z-+ RA194 (V )) A ( V  A 2 + RA194 (V )) 
V 

1 1   1 1  K 
0 4 0  0 0 4 1  0 

A - 0  0 0 Al0 0 0 0  Al0 - 
RA202(V,  V ) *  z ( V A U 1 3 4  (2 )) V (V A RA135 (Z )) =) Z 

V 

0 b6 o 6 6  o A l 0  A l 1  Al0 A 
1 0 1 0 K 
0 5 0 5 14 0 1  5 

( v f l \ R ~ 1 9 6  ( z)) V ( V A  RA195 ( z )) * R 
V 0  5 0 5 2 
K 1  1 0 

A o  Al0 0 A6 o 

f 

i 
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V 0 1  5 0 1  

K 1 0 1 
A 0 0  A6 0 

Z A ( Z A Z ) v Z A Z e R  

V 10 1 1  12 13 17 o 

A 0 0 0  0 0 0  

K 

TO * . , PA203 . 

Meatiing of the  data : 

. >  .'- . .- 

=, given  Situation 
4 

move 

mbying  Piece 

*" nornidl rnove " 

. .  

L -: ' a 

66 en - Passant capture " 

Castling 

L 

t 
C .  I 

t 

type of Castling 

z = q.s.c. 
4 
1 

z = ks.c.' 
. 4  
1 

new Situation e ZS 

'6 

'10 

'1 1. 

212 

'1 3 

'14 

piece  moved  in the previous  rnove(through en - Passant c a p t u r d  ) 
" the color of the moving  piece has the move " 

" normal move is allowed  and or the condition for en - Passant is 
satisfied 

" condition for en - Passant capture is  satisfied " I 
" condition for castling is satisfied. " 

" the king of the color which just moved is in check in the new 
Situation " . 

1 

I 
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RO 

R1 - 

- - " the move  is  allowed " 

- " new  Situation " 

% = " the opposing  color is mated by  the move " 

R3 = " the opposing  color is drawn by the move " . 
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Types of Data and Constants 

so = Yes-No-Values 

S1 .n = Series of Yes-No-Valucs . 4. .. f ‘4 

, is 

A  Al = S1.3 Coordinate 
T Al 

A M  = 2XA.Al = Point 

AA3 =’ Occupation Notation 
BA3 ’’.* ... .- 

A A4 = ( A M ,  AA3 ) = Point Occupation Notation 1 

A M  = 64XAA3 = Field Occupation 
;\ C u .  Start Occupation * .  

6 

A A6 = 64XA A4 = Field .Occupation with Evaluation of the Points P 
C .  E 

t B A4 C.A4. Start Occupation 

AA7 = 12XS1.4 ‘= List of the Numbers of Pieces 
. n i 

f 
C A7. Situation at  the , Start i 

t 
A 68 = Qz ( CA0.2, AA7 ) = List of the Numbers of Pieces with Designation of the I 

Pieces; CA8. Situation of the  Start -.. 

AA9 = ( A U ,  So, S1.4, AA2 ) = Game Situation 
CA9 Start Situation 

AA 10 = ( AA4, So, S1.4,  AA2 ) = Game Situation  with Evaluation of the Points 
CA10 Start Situation 1 

A N  1 = ( A M ,  A M ,  So ) = Move I3ata 
AA12 = Extended Move Data 

Other Constants 

CAO.l Valuation Table of the Pieces 

C 110.2 List of Pieces 
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