Konrad Zuse
Internet Archive

http://zuse.zib.de

Title: Plankalkul

Author(s): Raul Rojas

Date: 1999

Published by: Konrad Zuse Internet Archive
Source: Essay - ZIA ID: 0678

The Konrad Zuse Internet Archive preserves and offers free access to the digitized original documents of
Konrad Zuse's private papers and to other related sources.

The Konrad Zuse Internet Archive is a nonprofit service that helps scholars, researchers, students and
other interested parties discover, use and build upon a wide range of content in a digital archive. For more
information about the Konrad Zuse Internet Archive, please contact zusearchive@zib.de.

Your use of the Konrad Zuse Internet Archive indicates your acceptance of the Terms & Conditions of Use
(http://zuse.zib.de/tou) including the following license agreement. If you do not accept the Terms &
Conditions of Use you are not permitted to use the material.

This work by Konrad Zuse Internet Archive is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
Based on a work at http://zuse.zib.de

[@0Sle)

Attribution (BY) - You must attribute the work in the manner specified by the author or licensor (but not in any way that

suggests that they endorse you or your use of the work). Attribute with "Konrad Zuse Internet Archive
(http://zuse.zib.de)".

Noncommercial (NC) - You may not use this work for commercial purposes.

Share Alike (SA) - If you alter, transform, or build upon this work, you may distribute the resulting work only under the

same or similar license to this one.

The usage of this document requires the consideration of possible third party copyrights, and might
necessitate obtaining the consent of the copyright holder. The Konrad Zuse Internet Archive assumes no
liability with respect to the rights of third parties. The Konrad Zuse Internet Archive is not responsible for the
claims of any third party resulting from any infringement of copyright laws.

Konrad Zuse @@@
Internet Archive
BY NC SA

Plankalkl

The Plankalkil (calculus of programs) was the first high-level programming language
conceaved in the world. It was designed by Konrad Zuse, the German inventor, between 1943
and 1945 that is, at a time when the first computers were being built in the USA, UK and
Germany. It represents one of the mgjor contributions to the history of ideas in the computer
field, dthouwgh it was never implemented for any kind d madhine.

The Plankalkil corresponds to Zuse's mature wnception d how to buld a mmputer and how
to alocate the total computing work to the hardware and software of a madiine. Zuse clled
the first computers he wnstructed (the Z1, Z2, Z3 and Z4) "a gebraic machines" in contrast to
"logistic machines'. The first were speaally built to hande scientific computations, the latter
could ded with scientific but also with symbolic processng. Zuse's "logistic madcine' was
never built, bu its design call ed for a one-bit word memory and a processor which could only
compute the basic logic operations AND, OR and NOT. It was a sort of minima machine.
Sincethe memory consisted of along chain of bits, they could be grouped in any desired form
to represent numbers, characters, arrays, etc.

The Plankalkil was the software @urterpart of the logistic maciine. Complex structures
could be built from elementary ones, the simplest being a single bit. Also, sequences of
instructions could be grouped into subroutines and functions, so that the user had orly to deal
with a very abstrad instruction set that masked the cmplexity of the underlying hardware.
The Plankalkil exploited the ancept of moduarity, so important today in computer science,
amost in an extremist way: several layers of software make the hardware transparent for the
programmer. The hardware itself is able only to exeaute the @solutely minimal instruction
Set.

In Plankalkil, the programmer uses variables to perform computations. The notation is sich
that intermediate results are labeled Z1, Z2, Z3, etc. Inpu variables are labeled V1, V2, V3,
etc., andresults are labeled R1, R2, R3, etc. To describe avariable andits type, Zuse used the
"row notation", shown below:

aNEF N

Vv
K
S 0

These four lines define the variable Z1 (note that the index is written in the next line, the "V"
line), with "structure” 5.0, that is, five times the structure "o", which represents a single bit.
The K-line tell s us which component is being refereed to. In this case we refer to the seaond
bit of the five bit field Z1. Therefore, the notation is two-dimensional, although it could be
compres=d onasingle line. In amodern programming language, we would write Z1[2].

There ae no separate variable declarations; any variable can be used in any part of the
program and its type is written together with the name.

The type of avariable muld be selected in a very flexible way. The only primitive type was
"0" (abit). A group d n bitswas denoted as n.o. A group d mn-bit numbers, as m.n.o, and so
forth. Any kind d primitive data type (charaders, integers, reals) as well as vedors and

matrices can be defined in thisway. A type could be dbreviated using ancther letter, and this
letter could be used as buil ding block for another compasite type.

Variable assgnment isdore & in modern programming languages. The new value overwrites
the old value of a variable. There ae severa operations which are dso used like in ather
programming languages (addition, subtradion, etc.). The aldition d two variables V1 and V2
(eight bits eadh) can be stored in an intermediate variable Z1 using the following piece of
code:

In Pascd, we would just write Z1[1]:=V1[1]+V2[3]. Note that the variablesV1,V2 and Z1
have the same type: an array of five numbers of eight bits. The programmer hasto seeto it
himself that the assgnments refer to variables of the same type, sincethereisnotype
cheding.

Arrays of objeds can be indexed by using an auxili ary variable. The use of the index variables
is dhown using aline, as srown below:

\V -
1

\%
2
2
5.

g PR RPN

\Y
K
S 5.8.0 8.0 .8.0

In this example, the second comporent of the aray V2 contains the index for the aray V1.
The number is copied to the fist comporent of Z1. In Pasca we would write

Z1[1]:=V1[V2[2]].

Boolean operations produce results which are single bits. The zero is interpreted as FALSE
andthe 1 as TRUE. Bodean results can be used in condtional instructions.

Plankalkll can ded with condtional instructions of the "IF-THEN-ELSE" type. They are
written as guarded instructions of the form: A — B. If the guard A is true, the mommand B is
exeauted.

Blocks of instructions can be written in the Plankalkll by separating each instruction with a
verticd line or by writing the instructions one under the other. A block is enclosed in
parentheses. A block courts later as a single instruction and can be made part of ancther
block.

There is adso an iterative operator W, which repeds the exeaution d a sequence of
instructions until all guardsin the body of the loopfail:

\W A - B
C D
E - F

!

Here, the scope of the W covers the three guarded instructions, which form a block. The loop
is repeaed if any of the guards are true. Exeaution d the loopis terminated when the three
guards A,C, and E fail within the same iteration.

The dementary Boolean and arithmetic operations, guarded commands and the W control
structure form the basis of the Plankalkil. Other control structures and commands can be built
using them. There is for example aW1 control structure that would correspondto the FOR
command in a modern programming language, that is, an iteration that is performed a cetain
number of times. There ae dso aher more specialized constructions that employ quantors
("there eists an x such that", "for al x", etc.) but they can be expressed also using the basic
elements mentioned above. Zuse never built a cmpiler or interpreter for the Plankalkdl, bu it
seams that he was well aware that the more wmplex portions of the Plankalkil could be
written using the basic commands.

Subroutines and functions could be written in Plankalkil. A dedarationwas put in front of the
code to make it clear which variables were the arguments and which the results. This
dedaration was the "boundry portion" (Randatsaig) of the procedure. It was passble to give
also operators as arguments. A subroutine wuld be written, for example, that received as
argument the operator "+" or the operator "x", so that the same general code could be
compil ed with a different operator in the body of the routine. One complicaion d this sheme
was the asenceof a dear distinction between locd and global variables. Most of Zuse's draft
of 1945 ckds only with global variables, bu he dso indicaes that variables in dfferent
programs can have the same name, bu refer to dfferent memory locdliti es. Subroutines could
be used also as functions: Kla(x), in an example given by Zuse, is a function that checks if a
character x is an opening parentheses and returns a Boolean value.

Although Zuse published some small papers abou the Plankalkil and tried to make it known
in Germany, the language fell into oldivion. The main problem was its ambitious sope, the
large variety of instructions that it contained, its moduar architecdure which called for
incremental compilation, and the avail ability of dynamicd structures and functionals. Also,
some apeds of the semantics are not quite dear and the @sence of type decking would
have made it extremely difficult to debug. A pradica implementation d the Plankakdil
would certainly require amajor revision d Zuse's draft of 1945. However, Plankalkil was
way ahead o itstime and many of the concepts in which it was based were only rediscovered
much later. In the cae of the Plankalkul, Konrad Zuse suffered the same fate a Charles
Babbage with the Analytical Engine. Babbage had the right concepts but the wrong hardware.
After 1945, many more years would be needed urtil programming languages could achieve
the level of sophisticaion o Plankalkul.

References

Zuse, Konrad. Der Plankalkil. Bonnt Tedhnicd report 63, Gesell schaft fur Mathematik und
Datenverarbeitung, 1972.

-Raul Rojas

