Konrad Zuse
Internet Archive

http://zuse.zib.de

Title: The Architecture of Konrad Zuse's Early Computing
Machines.

Author(s): Raul Rojas

Date: 1997

Published by: Konrad Zuse Internet Archive

Source: Essay - ZIA ID: 0683

The Konrad Zuse Internet Archive preserves and offers free access to the digitized original documents of
Konrad Zuse's private papers and to other related sources.

The Konrad Zuse Internet Archive is a nonprofit service that helps scholars, researchers, students and
other interested parties discover, use and build upon a wide range of content in a digital archive. For more
information about the Konrad Zuse Internet Archive, please contact zusearchive@zib.de.

Your use of the Konrad Zuse Internet Archive indicates your acceptance of the Terms & Conditions of Use
(http://zuse.zib.de/tou) including the following license agreement. If you do not accept the Terms &
Conditions of Use you are not permitted to use the material.

This work by Konrad Zuse Internet Archive is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
Based on a work at http://zuse.zib.de

[@0Sle)

Attribution (BY) - You must attribute the work in the manner specified by the author or licensor (but not in any way that

suggests that they endorse you or your use of the work). Attribute with "Konrad Zuse Internet Archive
(http://zuse.zib.de)".

Noncommercial (NC) - You may not use this work for commercial purposes.

Share Alike (SA) - If you alter, transform, or build upon this work, you may distribute the resulting work only under the

same or similar license to this one.

The usage of this document requires the consideration of possible third party copyrights, and might
necessitate obtaining the consent of the copyright holder. The Konrad Zuse Internet Archive assumes no
liability with respect to the rights of third parties. The Konrad Zuse Internet Archive is not responsible for the
claims of any third party resulting from any infringement of copyright laws.

Konrad Zuse @@@
Internet Archive
BY NC SA

The Architecture of Konrad Zuse’s Early Computing
Machines

Raul Rojas*
September 29, 1997

Abstract

This paper provides the first detailed description of the architecture of the
computing machines Z1 and Z3 designed by Konrad Zuse in Berlin between 1936
to 1941. The necessary information was obtained from a careful evaluation of
the patent application filed by Zuse in 1941. Additional insight was gained from
a software simulation of the machine’s logic. The Z1 was built using purely
mechanical components, the Z3 using electromechanical relays. However, both
machines shared a common logical structure and the programming model was
exactly the same. We argue that both the Z1 and the Z3 possessed features
akin to those of modern computers: memory and processor were separate units,
the processor could handle floating-point numbers and compute the four basic
arithmetical operations as well as the square root of a number. The program
was stored on punched tape and was read sequentially. In the last section of
this paper we bring the architecture of the Z1 and Z3 into historical perspective
by offering a comparison with computing machines built in other countries.

1 Early computing machines

Konrad Zuse is popularly recognized in Germany as the “father of the computer” and
his Z1, a programmable automaton built from 1936 to 1938, has been called the “first
computer” in the world. Other nations reserve this privilege for one of their own
scientists and there has been a long and often acrimonious debate on the issue of the
“true” inventor of the computer. Sometimes the discussion is preempted by specifying
in full detail the technological features of a specific machine. The ENTAC, for example,
has been called the first large-scale general-purpose electronic computer in the world
[Burks, Burks 81]. The ENIAC (acronym for Electronic Numerical Integrator and
Computer) was built at the Moore School of Electrical Engineering of the University
of Pennsylvania from May 1943 to 1945. It solved its first problem in December 1945
and was officially presented in February 1946. Another contender for the title of first
computer is the Mark I built by Howard Aiken at Harvard University between 1939
to 1944. The Mark I was an electromechanical machine, a kind of hybrid between the
totally mechanical nature of previous computing devices and the electronics available
at the time [Aiken, Hopper 46]. The machine built by John Atanasoff (later called the
ABC) at Iowa State College from 1938 to 1942 used vacuum tubes, but was restricted
to the addition and subtraction of vectors and had an structure inappropriate for
universal computation [Burks, Burks 88]. In direct contrast to these three machines,
the Z1 was far more flexible and was designed to execute a long and modifiable

*Professor of Computer Science at the Martin Luther University in Halle.

1

sequence of instructions contained on a punched tape. Zuse’s machines were not
purely electronic and were of reduced size. Since the Z1 was completed prior to the
Mark I, it has been called the first programmable calculating machine in the world.
Of course the old debate will not be closed with this paper, but we want to show
here just how advanced the machines built by Zuse were when considered from the
viewpoint of modern computer architecture and compared with other early designs of
the time.

The university student Konrad Zuse started thinking about computing machines
in the 1930s. He realized that he could construct an automaton capable of execut-
ing a sequence of arithmetical operations like those needed to compute mathematical
tables. Coming from a civil engineering background, he had no formal training in
electronics and was not acquainted with the technology used in conventional mechan-
ical calculators. This nominal deficit worked to his advantage, however, because he
had to rethink the whole problem of arithmetic computation and thus hit on new and
original solutions.

Zuse decided to build his first experimental calculating machine exploiting two
main ideas: a) the machine would work with binary numbers; b) the computing and
control unit would be separated from the storage. Years before John von Neumann
explained the advantages of a computer architecture in which the processor is sepa-
rated from the memory, Zuse had already arrived at the same conclusions. In 1936
the memory! of the planned machine was completed. It was a mechanical device but
not of the usual type. Instead of using gears (as done by Babbage in the previous
century), Zuse implemented logical and arithmetical operations using sliding metallic
rods. The rods could move only in one of two directions (forward or backward) and
were therefore appropriate for a binary machine [Zuse 70]. The processor of the Z1
was completed a few months after the storage unit, using the same kind of technol-
ogy. It worked in concert with the memory but was never very reliable. The main
problem was the precise synchronization that was needed in order to avoid applying
excessive mechanical stress on the moving parts. It is interesting to point out that
in the same year as the memory of the Z1 was completed, Alan Turing wrote his
ground-breaking paper on computable numbers in which he formalized the intuitive
concept of computability.

The Z1, although unreliable, showed that the architectural design was sound and
compelled Zuse to start investigating other kinds of technology. Following the advice
of his friend Helmut Schreyer, he considered using vacuum tubes, but gave up the idea
in favor of electromechanical relays which were easier to obtain before and during the
war. An “intermediate” simpler model (the Z2) was built using a hybrid approach
(a processor built out of relays and a mechanical memory). Immediately afterwards
Zuse started building the Z3, a machine consisting purely of relays but with the same
logical structure as the Z1. It was ready and operational in 1941, four years before
the ENTAC.

This paper offers the first detailed discussion of the architecture of the Z1 and Z3.
The Z1 was reconstructed by Zuse himself in Berlin during the 1980s, and is now one
of the exhibition attractions at the Berlin Museum of Transportation and Technology.
However, the information available describes only the design of the mechanical mem-
ory [Schweier, Saupe 88]. The Z3 was documented by Zuse in his patent application
7-391 of 1941 which is rather difficult to decipher due to the non-standard notation
and terminology [Zuse 41]. Czauderna’s book about the Z3 is a good source to under-
stand the historical environment surrounding Zuse’s inventions, but does not describe

1Zuse called it the “Speicherwerk” (storage mechanism). The term “Speicher” is still used in
German instead of the antropomorphic term “memory” introduced by John von Neumann.

2

the Z3 in detail [Czauderna 79]. In what follows, since Z1 and Z3 were practically
equivalent from the logical point of view, we refer only to the Z3. The main architec-
tural difference between the Z1 and Z3 was the fact that the square root operation
was left out of the Z1. There were also minor differences in the number of bits used for
arithmetical operations in the processor (the Z1 used one bit less for the mantissa of
floating-point numbers) and the number of cycles needed for each instruction. With
this minor caveat and taking only the architectural features into account we can speak
of Z1 and Z3 as virtually the same machine.

2 Architectural overview of the Z1 and Z3

This section summarizes the most relevant architectural features of the Z3. The paper
goes from the simple to the complex: first we provide an overview of the architecture
and in Section 3 we go into more detail. In order to avoid awkward sentences, we
refer to the Z3 in the present tense.

Block structure

The 73 is a floating-point machine. Whereas other early computing automata like the
Mark I, the ABC and the ENTAC worked with fixed-point numbers, Zuse decided very
early on to adopt what he called the “semi-logarithmic” notation, which corresponds
to the modern floating-point representation.

punched tape
control numerical
. unit keyboard
o control —>
g%e + lines numerical
reager l display
address
|| bus data bus
arithmetical unit
data bus
memory (exponent) exponent significand
registers registers
data bus
(significand)

Figure 1: The building blocks of the Z3

Figure 1 is an overview of the main building blocks of the Z3. The first relevant
feature is the separation between processor and memory. The Z3 consists of a binary
memory unit (capable of storing 64 floating-point numbers), a binary floating-point
processor, a control unit and input-output devices. Memory and arithmetical unit are
connected through a data bus, which transmits the exponent and significand of the
floating-point representation. The control unit contains the microsequencers needed
for each instruction. Control lines going from the control unit to the processor, the
memory, and the I/O devices enforce the correct synchronization of all units. The

3

tape reader provides the opcode of each instruction as well as the address for memory
accesses. The I/O devices are connected through a data bus to the computing unit.

Floating-point representation

Figure 2 shows the representation used in the memory of the Z3. The first bit is
used to store the sign of the number, the following 7 bits for the exponent, and the
last 14 bits for the significand (only the 14 places to the right of the decimal point).
The bits of the exponent are called part “A” of the number and are denoted by
ag,...,a9. The bits of the significand are called part “B” of the number and are
denoted by bg,b_1,...,b_14. The exponent is coded as a two’s complement number.
The range of possible values runs therefore from —64 to 63. The significand is stored
in normalized form 2, that is, the first digit before the decimal point (by) must always
be a 1. This digit does not need to be stored (and therefore does not appear in
Figure 2) so that the effective range of the numbers in the memory unit is equivalent
to a significand of 15 bits. However, there is a problem with the number zero, which
cannot be expressed using a normalized significand. The Z3 uses the convention that
any significand with exponent —64 is to be considered equal to zero. Any number
with exponent 63 is considered infinitely large. Operations involving zero and infinity
are treated as exceptions and special hardware monitors the numbers loaded in the
processor in order to set the exception flags (see Section 4). With this convention

sign exponent significand

8 Y Y L 2 I

- 7 bits 14 bits
Figure 2: The floating-point representation in memory

the smallest number representable in the memory of the Z3 is 27%3 = 1.08 x 10719
and the largest is 262 = 4.61 x 10'8. The arguments for computations can be entered
as decimal numbers on the keyboard of the Z3 (four digits). The exponent of the
decimal representation is entered by pushing the appropriate one in a row of buttons
labeled —8,—7,...,7,8. The original Z3 could only accept input between 1 x 108
and 9999 x 10%. The reconstruction of the Z3 built by Zuse for the Deutsches Museum
in Munich provides enough buttons for larger exponents. With this arrangement the
whole numerical capacity of the machine can be reflected on the acceptable input.
The same can be said of the output. However, the Z3 does not print the numerical
results produced by the program. A single number is displayed on an array of lamps
representing the digits from 0 to 9. The largest number that can be displayed is
19999. The smallest is 00001. The largest exponent that can be displayed is +8, the
smallest —8.

Instruction set

The program for the Z3 is stored in punched tape. One instruction is coded using
8 bits for each row of the tape. The instruction set of the Z3 consists of the 9
instructions shown in Table 1. There are three types of instructions: I/O, memory,
and arithmetical operators. The opcode has a variable length of 2 or 5 bits. Memory

2Donald Knuth attributes the invention of normalized floating-point numbers to Zuse [Knuth 81].

4

operations encode the address of a word in the lower six bits, that is, the addressing
space has a maximum size of 64 words, as we mentioned before.

Table 1: Instruction set and opcodes of the Z3

Type Instruction | Description Opcode
I/0 Lu read keyboard | 01 110000
Ld display result 01 111000
memory | Prz load address z | 11 zgz524232221
Psz store address z | 10 zg2524232921
arithmetic | Lm multiplication | 01 001000
Li division 01 010000
Lw square root 01 011000
Ls; addition 01 100000
Lso subtraction 01 101000

The instructions on the punched tape can be arranged in any order. The instruc-
tions Lu and Ld (read from keyboard, display result) halt the machine, so that the
operator has enough time to input a number or write down a result. The machine is
then restarted and continues processing the program.

The instruction most conspicuously absent from the instruction set of the Z3 is
conditional branching. Loops can be implemented by the simple expedient of bringing
together the two ends of the punched tape, but there is no way of implementing
conditional sequences of instructions. The Z3 is therefore no universal computer in
the sense of Turing.

Number of cycles

The Z3 is a clocked machine. Each cycle is divided into five “stages” called I, II,
III, IV, and V. The instruction in the punched tape is decoded in stage I of a cycle.
The two basic arithmetical operations of the machine are addition and subtraction of
exponents and significands. The operations can be executed in the first three stages
of each cycle. Stages IV and V are used to prepare arguments for the next operation
or to write back results.

The instructions implemented in the Z3 require the following number of cycles:

Multiplication: 16 cycles

Division: 18 cycles

Square root: 20 cycles

Addition: 3 cycles

Subtraction: 4 or 5 cycles, depending on the result
Read keyboard: 9 to 41 cycles, depending on the exponent
Display output: 9 to 41 cycles, depending on the exponent
Load from memory: 1 cycle

Store to memory: 0 or 1 cycle

According to Zuse, the time required for a multiplication was 3 seconds. Con-
sidering that a multiplication operation needs 16 cycles, we can estimate that the
operating frequency of the Z3 was 16/3~5.33 Hz 3.

The number of cycles needed for the read and display instructions is variable,
because it depends on the exponent of the arguments. Since the input has to be
converted from decimal to binary representation, the number of multiplications needed
with the factor 10 or 0.1 is dictated by the decimal exponent (see Section 4).

Addition and subtraction require more than one cycle because in the case of
floating-point numbers, care has to be taken to set the size of the exponent of both
arguments to the same value. This requires some extra comparisons and shifting.

A number can be stored in memory in zero cycles, when the result of the last
arithmetical operation can be redirected to the desired memory address. In this
case the cycle needed for the store instruction overlaps with the last cycle of the
arithmetical operation.

Programming model

It is very important to describe the programming model of the Z3, that is, the part of
the machine visible for the programmer. From the point of view of the software, the
Z3 consists of 64 memory words that can be loaded into two floating-point registers,
which we simply call R1 and R2. These two registers contain the two arguments of
arithmetical operations requiring them. The programmer can write any sequence of
instructions, but has to keep in mind the state of the machine’s registers.

The important point to remember is the following: the first load operation in a
program (Pr z) transfers the contents of address z to R1. Any other subsequent load
operation transfers a word from memory to R2. A read keyboard instruction loads
the numerical input into register R1 and destroys register R2.

Arithmetical operations do not specify their arguments in the opcode. Their
implicit semantics is the following:

Multiplication: R1:=R1xR2
Division: R1:=R1/R2
Addition: R1:=R1+R2
Subtraction: R1:=R1-R2
Square root: Rl:=sqrt(R1)

R2 is set to zero after an arithmetical instruction whereas the result is stored in
R1. Subsequent load operations refer to R2. The store and display instructions refer
always to register R1, which also contains the result of the previous arithmetical
operation. After a store or a display operation R1 is set to zero. The next load
operation refers then to R1.

An example is better than many additional remarks to clarify the programming
model of the Z3. Assume that we want to compute a polynomial using Horn’s method:

z(a2 + x(as + zas))) + a1.

Assume further that we have stored the constants ay4, a3, as,a; in the addresses 4, 3,
2, and 1 of the memory unit. The value z is stored in address 5. The program that
performs the desired computation is the following;:

31t is a curious fact of life that the gate-level simulation of the Z3 implemented by my students
using a personal computer also required around 3 seconds for a multiplication!

6

Pr4 load a4 in R1
Pr5 load z in R2

Lm multiply R1 and R2, result in R1
Pr3 load a3 in R2

Ls; add R1 and R2, result in R1
Pr5 load z in R2

Lm multiply R1 and R2, result in R1
Pr 2 load a2 in R2

Ls; add R1 and R2, result in R1
Pr5 load = in R2

Lm multiply R1 and R2, result in R1
Pri1 load a; in R2

Ls; add R1 and R2, result in R1

Ld display result

After the last instruction has been executed the processor is reset to its initial
state. A new program sequence can be started.

3 Block diagram of the Z3

In this section we take a closer look at the structure of the Z3 and describe its
main building blocks in more detail. The main issue is how to enforce the correct
synchronization of the available components.

The processor

Figure 3 shows a simplified representation of the arithmetical unit of the Z3. There
are two parts: the left side is used for operations with the exponents of the floating-
point numbers, the right side for operations with the significands. Af and Bf are
registers used to store the exponent and significand of what, from the programmers
point of view, is register R1. We will refer to R1 as the register pair <AfBf>. The
register pair <Ab,Bb> stores the exponent and significand of R2. The pair <Aa,Ba>
contains the exponent and the significand of a third temporal floating-point register
invisible to the programmer. The two ALUs A and B are used to respectively add
or subtract exponents and significands. The result of the operation in the exponent
part is put into Ae. In the significand part, the result of the operation is put into Be.
In part B a multiplexer allows selection of Ba or the output of the ALU as the result
of the operation. The multiplexer is controlled by a relay Bt (if Bt=0 then Be is set
equal to Ba).

The small boxes labeled Ea, Eb, Ec, Ed, Ef, Fa, Fb, Fc, Fd, Ff are switches that
open or close the data bus. If the contents of register Af are to be transferred to Aa,
for example, the box of relays Ea is set to 1 and the result is Aa:=Af. As can be
seen from the diagram, the contents of Af can be transferred to Aa or Ab, whereas
the contents of Ae can be transferred to any of Aa, Ab or Af, according to the states
of the switches. The structure of part B of the arithmetical unit is very similar,
but in addition to the multiplexer controlled by the relay Bt, there is also a shifter
between Bf and Ba, and a shifter between Bf and Bb. The first shifter can displace
the significand up to two positions to the right and one position to the left. This
amounts to a division of Bf by 4 or a multiplication with the constant 2. The second
shifter can displace the significand in Af from 1 to 16 positions to the left and from
1 to 15 positions to the right. These shifts are needed for addition and subtraction

7

floating-point
register R1

[sitt(2.0] [snift c16.15)]

floating-point \I\ ‘
register R2 |
| B | | B |

| multiplexer ~ |— Bt

Part A: operations with the exponents Part B: operations with the significands

Figure 3: The registers and datapath

of floating-point numbers. Multiplication and division with powers of 2 can therefore
be performed when the operands for the next arithmetical operation are fetched and,
in this sense, do not consume time.

The number of bits used in the registers are the following:

Af 7 bits Bf 17 bits

Aa 7 Ba 19
Ab 7 Bb 18
Ae 8 Be 18

As can be seen from this list, Ae uses one extra bit to handle the addition of
the exponents of the arguments. Part B of the processor uses two extra bits for the
significands (b_15,b_16) and makes explicit by, which is not stored in memory. The
extra bits at positions —15 and —16 are included to increase the precision of the
computations. The total number of bits needed to store the result of an arithmetical
operation in Bf is therefore 17 bits. Registers Ba and Bb require more extra bits (bas,
bai, and bb;) to handle intermediate results of some of the numerical algorithms. In
particular the square root algorithm can lead to partial computations in Ba requiring
three bits to the left of the decimal point.

The basic primitive operation of the datapath is the addition or subtraction of
exponents or significands. When the relays As or Bs are set, the negation of the

8

second argument (Ab or Bb) is fed into the ALU. Therefore if the relay As is set to
1, the ALU in part A subtracts its arguments, otherwise they are added. The same
is true for part B and the relay Bs. The constant 1 is needed to build the two’s
complement of a number.

Assume that two numbers with the same exponent are to be added. The first
exponent is stored in Af, the second in Ab. Since they are equal, no operation has
to be performed on this side of the machine. In part B, the significand of the first
number is stored in Bf and the significand of the second in Bb. The first step consists
of loading Ba with Bf by setting the relay box Fa to 1. The addition is performed
next, the relay Bt is set to zero and so the result Ba+Bb is assigned to Be. The relay
box Ff is now set to 1 and the result is stored in Bf. As we see the information can
move between registers and so flow through the datapath. The computer architect
has to provide the correct sequence of activations of the relay boxes in order to
get the desired operation. This is done in the Z3 using a technique very similar to
microprogramming.

The control unit

Figure 4 shows a more detailed diagram of the control unit and of the I/O panels.
The circuit Pb decodes the opcode of the instruction read from the punched tape. If
it is a memory instruction, circuit Pb sets the address bus to the value of the lower six
bits of the opcode. The control unit determines the correct microsequencing of the
instructions. There are special circuits for each of the operations in the instruction
set.

exponent of input exponent of result
K Q
punched tape .
control unit @ @ @ @
3 e T
E iﬁ!iﬁic&ion 3
Pa opcode division J Z (keyboard) R (result)
Egg,a;fgw w OEOO OO
pum Pb address sign Vv : :
% QOOO® OOOOO®
@OO©O @@@(T
address bus data bus data bus

Figure 4: The control unit and I/O panels

Circuit Z represents the panel of buttons used to enter a decimal number in the
machine. Only one button in each of the four columns can be activated. The exponent
is set by pressing one of the buttons labeled —8 to 8 in circuit K. The output display
is very similar to the input panel, but here lamps illuminate the appropriate decimal
digits, the exponent of the number (circuit Q), as well as its sign. Note that there is
a fifth digit for the output (which can only be 1 or 0).

Once a decimal number has been set, a data bus transmits the digits to register Ba
and a complex series of operations is started. The decimal input must be transformed
into a binary number. This requires a chain of multiplications, which is longer ac-
cording to the absolute magnitude of the exponent. If the exponent is zero, the whole

9

transformation requires 9 cycles, but if it is 8, the operation requires 9 +4 x 8 = 41
cycles.

Microcontrol of the Z3

The heart of the control unit are its microsequencers. Before we describe the way they
work it is necessary to take a closer look at the chaining of arithmetical instructions
in the Z3. Figure 5 shows the main idea. Each cycle of the Z3 is divided into five
stages. Stages IV and V are used to move information around in the machine. During
stages I, IT and III an addition/subtraction is computed in part A and another in part
B of the Z3. We call this the “execute” phase of an instruction. A typical instruction
fetches its arguments, executes and writes back the result. Zuse took great care to save
execution time by overlapping the fetch stage of the next instruction with the write-
back stage of the current one. We can think of an execution cycle as consisting of just
two stages, as shown in Figure 5 where the first two cycles of a series of instructions
have been labeled. We have adopted this convention in the tabular diagrams of the
numerical algorithms discussed later on.

vV Vv I vV Vv

fetch args execute | write back

' fetch args execute | write back
' first cycle ;
' fetchargs | execute | writeback
| second cycle

Figure 5: The execution pipeline of the Z3

The microsequencing is done by special control wheels. There is one for the
multiplication algorithm, another to control division and another for the square root
instruction. The moving arm shown in Figure 6 starts moving clockwise as soon
as the control unit decodes the corresponding instruction. In each cycle the arm
moves from one position to the next. The arm conduces electricity and activates
the circuits with which it comes into contact. In the example shown in the figure,
the moving arm sets the relay box Ea to 1 in the first cycle. This leads to the
transfer of the contents of register Af into Aa. In the next cycle the relay boxes
Ec and Fc are activated. In this way the results of the operations in parts A and
B are written back into the registers Aa and Ba respectively. As one can see, such
control wheels provide a comfortable platform for modifying the exact sequence of
events during an operation. They correspond to the microsequencers used today in
modern microprocessors. I stop short of calling them a form of microprogramming,
because in this case the microsequence has been hardwired, but it is obvious that
microsequencing and microprogramming are closely related.

Extensive use of microsequencing allowed Zuse to simplify the Z3. Once the basic
circuits had been laid out, it was just a matter of refining the control until optimal
sequences of events could be found. There are a lot of details that must be kept
in mind by the engineer designing the “microprogram”, otherwise short circuits can
destroy the hardware. The Z1 with its mechanical design was still more sensitive
in this respect than the Z3. Even after it was completed, there were sequences of
instructions that the programmer had to avoid in order not to damage the hardware.

10

Figure 6: Control wheels for microsequencing

One of those sequences was inadvertently tried at the Berlin Museum of Technology
and Transportation which led to slight damaging of the reconstructed Z1 in 1994.

The adders

An important feature of the Z3 is the design of the adders, which compute additions
and subtractions using a method called carry look-ahead. If binary addition is imple-
mented in a straightforward way, carries have to be passed from one bit position to the
next. In the case of the significand we would need 16 cycles just for the transmission
of the carry bits.

The adders designed by Zuse are much faster than that — they perform an addition
or subtraction in stages I, II, and III of a single cycle. Subtraction is computed by
complementing the second argument and adding an extra 1 at the lowest bit position.

bh, bh bh_; bh_s¢
L bc 4 I bcy ‘ bc_y5 bc_1¢
bd, bdo bd 15 bd .16

Figure 7: Circuit for carry look-ahead

Consider addition of the registers Ba and Bf. First of all a partial result Bc is
computed which is the bitwise XOR of both registers, i.e., bc; = ba; XOR bb;. We will
refer to bit i-th of register Bb by bb; or BbJi], whatever form seems more convenient.
The same notation will be used in the case of other registers. A second partial result
is the bitwise AND operation applied to both registers, i.e., bh; = ba; AND bb;. This
last operation locates the bit positions at which a carry is needed. The intermediate
result Bd is computed by using the circuit shown in Figure 7. The input to the
circuit consists of the bits bhy,...,bh_15 computed previously. When a bit is 1, the
corresponding line carries a current, otherwise the line is disconnected from the power
source (three-state). The resting position of the relays bey, . .., bc_16 is the one shown
in the figure. If bit bc; is equal to 1 the corresponding relay is closed. The final result
is be; = bd; XOR bc;. Note that the use of relays makes the propagation of the carries
up to the last bit position needed easier. Since all relays are activated simultaneously,
the carry is not delayed in going from one bit position to the next.

11

4 Numerical algorithms

In this section we describe the floating-point algorithms used by the Z3. They are,
without exception, the same as those normally used in small sequential floating-point
processors [Koren 93].

Floating-point exceptions

The problem with floating-point notation is that special conventions have to be used
to deal with the number zero. The Z3 solves this problem and deals with other
exceptions (overflow, underflow) by monitoring the value of the exponent after any
arithmetical operation or a load from memory. A special circuit looks at the state
of the bus Ae and captures exceptions. Any number with exponent —64 is flagged
as zero: a relay denoted Nn; is set to 1 if the number is stored in the register pair
<AfBf>. If the number is stored in the register pair <Ab,Bb>, the relay Nn» is set
to 1. In this way we always know if one or both of the arguments for an arithmetical
operation are zero. Something similar is done for any exponent of value 63 (an infinite
number, according to the convention). In this case the relays Ni; or Niy are set to 1
according to the register pair in which the number is stored.

Operations involving “exceptional” numbers (zero or infinity) are performed as
usual, but the result is overridden by the snooping circuit. Assume for example that
a multiplication is computed and that the first argument is zero (Nn; is set to 1). The
computation proceeds as usual, but in each cycle the snooping circuit produces the
result —64 at the output of the adder of part A. It does not matter what operations
are performed with the significands because the exponent of the result is set to —64
and therefore the final result is zero. Division by an infinite number can be handled
in a similar manner. The Z3 can detect undefined operations like 0/0, oo — 0o, 00/c0
and 0 x co. In all these cases the corresponding exception lamp lights on the output
panel and the machine is stopped. The Z3 always produces the correct result when
one of the arguments is zero or co and the other a number within bounds*.

An additional circuit looks at the exponent of the result at the output of the
exponent’s adder. If the exponent is greater than or equal to 63, overflow has occurred
and the result must be set to co. If the exponent is lower than —64, underflow has
occurred and the result must be set to 0. To do this, the appropriate relay (Nn; or
Niy) is set to 1.

Zuse managed to implement exception handling using just a few relays. This
feature of the Z3 is one of the most elegant in the whole design. Many of the early
microprocessors of the 1970s did not include exception handling and left it to the
software. Zuse’s approach is sounder, since it frees the programmer from the tedium
of checking the bounds of his numbers before each operation.

4This was not the case for the Z1. Zuse thought of, but did not implement, exception handling
in the Z1. The machine could not correctly perform computations involving zero [Zuse, personal
communication].

12

Addition and subtraction

In order to add or subtract two floating-point numbers = and y, their representation
must be reduced to the same exponent. After this has been done only the significands
have to be added or subtracted. If the exponents are different, the significand of the
smaller number is shifted to the right as many places as necessary (and its exponent
is incremented correspondingly to keep the number unchanged) until both exponents
are equal. It can of course happen that the smaller number becomes zero after 17
shifts to the right.

The signs of the two numbers are compared before deciding on the type of oper-
ation to be executed. If an addition has been requested and the signs are the same,
the addition is performed. If the signs are different a subtraction is executed. If a
subtraction has been requested and the signs are different, an addition is executed.
If the signs are the same, the subtraction is executed. A special circuit sets the sign
of the result according to the signs of the arguments and the sign of the result.

Addition and subtraction are controlled by a chain of relays (not by a control
wheel) since the maximum number of cycles needed is low. Figure 8 shows the syn-
chronization required for the addition of two numbers. Initially, the arguments for
the addition are stored in the register pairs <Af,Bf> and <Ab,Bb>. In the first cycle
the exponents are subtracted. In cycle 2, the significand with the larger exponent is
loaded into register Ba and the significand with the smaller exponent into register
Bb. The significand in register Bb is shifted as many places to the right as the ab-
solute value of the difference of the exponents (exception handling takes care of the
case when the smaller number becomes zero after the shift). In stages I, IT and III
of cycle 2 the significands are added and finally the processor tests if the result is
greater than 2. If this is the case, the significand is shifted one position to the right
and the exponent is incremented by 1. Note that the test “if (Be>2)” in part A of
the arithmetical unit is done after Be has already been computed in part B during
stages I, II, and III of cycle 2.

In the case of a subtraction four or five cycles are needed. Figure 9 shows the
synchronization required for a subtraction. The first two cycles are almost identical to
the first two cycles of the addition algorithm, but now the significands are subtracted.
Cycle 3 is executed only when the difference of the significands is negative. The effect
of cycle 3 is just to make the significand of the result positive. Cycle 4 is very
important: the difference of two normalized significands can have many zeros in the
first bit positions to the left. The result is normalized by shifting Be to the left as
many places as necessary (this is done with the shifter between the relay box Fd and
register Bb). The number of one-bit shifts is subtracted from the exponent in part A
of the processor. In cycle 5 the result is stored in the register pair <Af,Bf>.

13

[cycle | stage | exponent

significand

0 | LILII
1 IV,V | Aa:=Af
LILITI | Ae:=Aa—Ab Be:=0+Bb
. o o if (Ae>0) then Ba:=Bf, Bb:=Be (shifted)
2 v,y | I (Ae20) 31;“ ﬁ:;:g’ Aai=Af else Ba:=Be, Bb:=Bf (shifted)
T (Be or Bf are shifted |Ae| places to the right)
if (Be>2) then Ae:=Aa+Ab+1 __
IILIIT e Ao Ao AL Be:=Ba+Bb
- if (Be>2) then Bf:=Be/2
3 IV,V | Afi=Ae else Bfi—Be

Figure 8: The 3 cycles needed for the addition algorithm. The arguments for the
addition are stored in the register pairs <Af Bf> and <Ab,Bb> before the operation
is started.

14

[cycle | stage | exponent | significand
0 | LILII
1 IV,V | Aa:=Af
LILITI | Ae:=Aa—Ab Be:=0+Bb
. o o if (Ae>0) then Ba:=Af, Bb:=Be (shifted)
2 v,y | I (Ae20) 31;“ ﬁ:;:g’ Aai=Af else Ba:=Be, Bb:=Bf (shifted)
T (Be or Bf are shifted |Ae| places to the right)
LILIIT | Ae:=Aa+Ab Be:=Ba—Bb
3 v,V Aa:=Ae, Ab:=0 Ba:=0, Bb:=Be
LILIII | Ae:=Aa+Ab Be:=Ba—Bb
4 V.V Aa:=Ae Bb:=Be (shifted)
’ Ab:= number of shift positions | (Be is normalized by shifting to the left)
LILITI | Ae:=Aa—Ab Be:=0+Bb
5 v,V Af:=Ae Bf:=Be

Figure 9: The 4-5 cycles needed for the subtraction algorithm. The first argument is
stored in the register pair <Af,Bf> and the second in <Ab,Bb> before the operation
is started.

15

Multiplication

The multiplication algorithm of the Z3 is like the one used for decimal multiplication
by hand, that is, it is based on repeated additions of the multiplicator according to
the individual digits of the multiplicand. At the begining of the algorithm the first
argument is stored in the register pair <Af Bf>. The second argument is stored in
the register pair <Ab,Bb>. The temporal register pair <Aa,Ba> is set to zeroes.
Figure 10 shows the microsequencing produced by the multiplication wheel of the
control unit. The algorithm takes 16 cycles to run. Note that only the bits of the
multiplicand from position —14 to position 0 are used. The exponents are added in
the first cycle and the result just loops afterwards in part A of the arithmetical unit.
The significands are handled in part B of the unit. Register Ba contains the partial
result of the computation. The basic multiplication loop has the following form:

Ba:=Be/2
Be:=Ba + Bbx(i-th bit of Bf)

for¢t = —14,...,0. The partial result Be is shifted one position to the right to produce
Ba:=Be/2. This is done with the shifter connected to the relay box Fc.

The result of the multiplication is a number 1 < r < 4 (for arguments within
bounds). In the last cycle thre is a check to see if # > 2. If this is the case the result
is shifted one position to the left and a 1 as added to the exponent of the result.

16

Division

The division algorithm is similar to the multiplication algorithm, but subtraction is
used repetitively instead of addition. At the begining of the algorithm the dividend
is stored in the register pair <AfBf>. The divisor is stored in the register pair
<Ab,Bb>. The temporal register pair <Aa,Ba> is set to zeroes. Figure 11 shows the
microsequencing produced by the division wheel of the control unit. The algorithm
takes 18 cycles to run.

The main idea of the algorithm is very simple. The exponent of the result is ob-
tained by subtracting the exponents of dividend and divisor. Now for the significand:
assume that we want to compute x/y for the significands = and y. Since we are
dealing with normalized numbers, the first digit of the result is 1 if z > y and zero
if z < y. In the first case, we set the first digit of the result to 1 and compute the
remainder, which is x — y. The remainder is divided recursively by y. To do this, it
is shifted one position to the left and the new result bit is stored at position [—1] of
register Bf (in this way nullifying the effect of the shift). If the result bit is zero, the
remainder is just z and the recursive division is continued as in the first case.

The basic division loop has the following form:

Ba:=2xBe
if (Ba—Bb > 0) then Be:=Ba—Bb, Bf[i]:=1
else Be:=Ba B{[i]:=0

for i =0,...,—14. The partial result Be is shifted one position to the left to produce
Ba:=2xBe. This is done with the shifter connected to the relay box Fc.

The result of the division of significands is a number 1/2 < r < 2. This condition
is tested in cycles 17 and 18. If r < 1, a 1 is subtracted from the exponent and the
result is shifted one position to the left in order to get a normalized number.

17

Square root extraction

The square root algorithm is the jewel in the crown of the Z3. Figure 12 shows the
microsequencing required during the 20 cycles needed to compute the square root of a
number. The argument for the operation is stored in the register pair <Af Bf>. The
register pair <Aa,Ba> is initialized to zeroes. The algorithm computes the square
root of numbers with an even exponent. If the exponent is an odd number, the
significand is shifted one place to the left and the exponent is decremented by one.
The final exponent (computed in cycle 19) is half this initial exponent.

The main idea of the algorithm is to reduce the square root operation to a division.
If we want to compute the square root of z, we need a number @) such that z/Q = Q.
The result @ is built sequentially by setting the i-th bit to 1 and then testing whether
the condition z > Q? still holds. If this is not the case the i-th bit must be set to 0.

Assume that we have already computed from bit 0 to bit —i + 1 of the final result.
Denote by Q_;4+1 the significand

Q i1 =Bf[0] x 2° + Bf[—1] x 271 + - - - + Bf[—i 4 1]27FL,
Bit —i is then set to to ¢_; and it must hold that
x> Q% = (Qoip1 +q-i27")?

This is true if ' .
(2 —Q%;11) — 27 (2Q_i11 +27'q_;) > 0

Define t_; using the expression

27 = (2 - Q%41)2712" =277 i(2Q i1 +27'q)
This can be written as

270 =t 27272l 97 1(2Q 41 + 27)

where we have used the recursive definition 27" _; 1 = (z — Q_;4+1)?. Simplifying
the last expression we finally get:

toi =2ty — q-i(2Q_iy1 +27'q—y)

If t_; is positive for ¢_; = 1, we set bit —i of the final result to 1, i.e., Bf[—i]:=1. If
t_; is negative, we set Bf[—i]:=0. The recursive computation is started with ¢, = x.
(Q_;+1 represents at each step the partial result contained in register Bf. Bit —i is
tentatively set and the sign of {_; is tested.

The basic loop of the square root algorithm for bit —i has the following form:

Ba:=2xBe
Bb:=2xBf
Bb[—i]:=1

if (Ba—Bb > 0) then Be:=Ba—Bb, Bf[—i]:=1
else Be:=Ba, Bf[—i]:=0

All bits of register Bf are used for the computation of the square root. If the
original number lies within bounds, the result is also within bounds.

18

Read and display instructions

The two most complex instructions of the Z3 are those related to the input and output
of decimal numbers. A decimal number of four digits entered through the keyboard is
first converted into a binary integer. This is done by reading each digit sequentially,
transforming it into a binary number and storing it in the bits Ba[—10], Ba[—11],
Ba[—12], and Ba[—13] of register Ba. The number in register Ba is multiplied by 10
and the procedure is repeated for the other digits. After 4 iterations the decimal input
has been transformed to a binary number (the exponent is adjusted to the correct
value). The difficult part is handling the exponent. If the exponent e is positive,
the significand has to be multiplied e times with 10. If it is negative, it must be
multiplied |e| times with 0.1. Multiplying with 10 is relatively easy: the significand
in Be can be shifted one bit to the left and then stored in Ba (that is Ba:=2xBe).
At the same time Be can be shifted 3 places to the left and can be stored in Bb
(that is Bb:=8xBe). The addition of Ba and Bb then provides the desired result: the
multiplication of the original number in Be with the constant 10. The process takes
4 cycles for multiplication, that is 32 cycles for the decimal exponent +8. Since a
read operation needs a minimum of 9 cycles, this means that a decimal number with
exponent +8 is read in 41 cycles.

In the case of negative exponents, multiplication with the constant 0.1 is performed
using the shifters and the adders as well. This multiplication is somewhat more
complex, because 0.1 is a periodic number in the binary system. The description of
the microsequencing used would take us too far away from the main topics, so we
omit it here.

The display instruction works by multiplying or dividing iteratively by 10. If the
binary exponent of the number in register R1 is positive, the number is multiplied
with 0.1 as many times as needed to make the binary exponent equal to 2 and until
the first left four bits of register Bf contain a number between 0 and 9 (0000 and
1001). This is the decimal digit that can be displayed in the next column of the
output panel. The number is subtracted from the significand in Bf and the process
continues for the following digits. If the binary exponent of the number in register R1
is negative, the process is similar, but multiplications with the constant 10 are used.

5 Complete architecture of the Z3

We are now in a position to make sense of the detailed diagram of the Z3 shown
in Figure 13. We see some of the components which were discussed in the previous
sections.

The control unit and the I/O panels were discussed before. Notice that the four
decimal digits of the input keyboard are tranferred to register Ba using the relay
boxes Za, Zb, Zc, and Zd, which are activated one after the other.

The relay boxes Eg and Ei are used to set some useful constants directly into the
exponent registers (+13 and —4). The shifter Ee between register Af and register Aa
is used for the square root algorithm. The exponent of the result (Aa) becomes half
the exponent (Af) of the original number.

Ah; is a relay acting as a flip-flop. When it is set to 0, the register pair <Af,Bf>
is accessed by load operations. When it is set to 1, the register pair <Ab,Bb> is
accessed. This relay is reset to 0 by the control line a;. The control lines a;, aj, by,
and b; are used to clear the registers Af, Ab, Bf, and Bb when needed.

The box labeled “zero, infinite” below Ae represents the circuits for exception
handling. They snoop permanently on the data bus (results of operations and data
from memory) and raise the corresponding exception flags when needed. The shifter

19

below Be is used to displace the significand one bit to the right. This provides the
normalization needed for the significand whenever Be>2.

Fp and Fq are the relays which control the number and direction of one-bit shifts
in the shifter below the relay boxes Fc and Fa. Fh, Fi, Fk, Fl, and Fm have the same
function in relation to the other shifter. Using these five bits the numbers between -16
and 15 can be represented and this is also the range of the second shifter. When such
a shift is performed, the number represented by the relays Fh to Fm is transferred
through the relay box Bn to register Ab in order to modify the exponent of the result.
If the number is shifted 10 positions to the left then +10 is subtracted from the
exponent of the result. Such drastic shifts are needed mostly after subtractions.

Look again at the diagram of the Z3. Everything makes sense now and looks as
conventional as any modern small floating-point processor. It is indeed amazing how
Konrad Zuse was able to find the adequate architecture right from the beginning.
The Z3 processor employs just 600 relays; the memory needs three times as much.
By having to optimize the design, by having to save hardware everywhere, Zuse was
forced to think and rethink the logical structure of his machine. He was not allowed
the luxury of the almost unlimited funding allocated by the US military for the
development of the ENTAC or by IBM for the Mark I. He was all alone and while this
may have worked to his advantage from the conceptual side, it may also have worked
to his disadvantage when considering the negligible impact that the Z1 and Z3 had
on the emerging American computer industry after the war [Stern 81].

6 The invention of the computer

The main defect of the Z3 was the absence of a conditional branch in the instruction
set. It would not have been difficult to implement it: although it is rather clumsy
to do when the program is stored on punched tape, the necessary mechanism would
have required just a few additional circuits.

Sometimes the dividing line between calculating machines and universal computers
is drawn by differentiating between machines with externally or internally stored
programs. I have argued elsewhere [Rojas 93] that this is not a valid criterion. An
external program can work as an interpreter of numerical data. The external program
becomes a fixed part of the processor and the data becomes the program, much in the
same way as a universal Turing machine works as an interpreter. I have argued that
what is needed for universal computation is a minimal instruction set and indirect
addressing [Rojas 94]. Indirect addressing can be simulated by writing self-modifying
programs, so that the instruction set becomes the defining criterion. A machine
with enough memory, an accumulator, and capable of executing the instructions CLR
(clear), INC (increment), LOAD, STORE, and BZ (branch if zero) is a universal
computer. In this sense, the Z1 was not a fully fledged computer, but neither were
any of the other early machines. The ABC was a special purpose machine for Gauss
elimination, the Harvard Mark I lacked conditional branching although it featured
loops. The ENIAC was not even programmable through software: the building blocks
had to be hardwired in dataflow fashion. Conditional branching was available in the
ENTAC only in a limited way and self-modifying programs were of course out of the
question.

Tables 2 and 3 show the most relevant information about the early computing
machines mentioned in section 1. As should be clear from the tables none of them
fulfills all the necessary requirements for a universal computer. We also include the
Mark 1 machine built in Manchester from 1946 to 1948, because as far as we know
this was the first machine to fit our definition of a universal computer. The Mark 1

20

Table 2: Comparison of architectural features

Machine memory and conditional soft or hard self-modifying indirect
CPU separated? | branching? | programming programs? addressing?

Zuse’s Z1 V4 X soft X

Atanasoff’s V4 X hard X X

H-Mark 1 X X soft X X

ENIAC X partially hard X X

M-Mark 1 V4 V4 soft Vv X

Table 3: Some additional architectural features

Machine internal | fixed-point or | bit-sequential | architecture technology
coding | floating-point? arithmetic?

Zuse’s Z1 binary floating no sequential mechanical

Atanasoff’s | binary fixed-point yes vectorized electronic

H-Mark I decimal fixed-point no parallel electromechanical

ENIAC decimal fixed-point no dataflow electronic

M-Mark 1 binary fixed-point yes sequential electronic

was built under the direction of F.C. Williams and T. Kilburn. This machine stored
its program in random access digital memory implemented with CRT tubes. All nec-
essary instruction primitives were available (in modified form) and although it lacked
indirect addressing, self-modifying programs could be written. The first program
ran in June 1948 and calculated the highest proper factor of 2!® [Lavington 75]. In
September Alan Turing was appointed Reader in Mathematics in Manchester and
wrote some programs for the first universal computer in the world. His vision of
universal computation published in 1936, the same year in which the storage unit of
the Z1 was completed, had at last become true. Tables 2 and 3 are emphatic: the
invention of the computer was a collective achievement encompassing two continents
and twelve years.

Acknowledgements

Deciphering the sketchy documentation available was possible only with the collab-
oration of several of my students at the Universities of Halle and Berlin. I thank
Alexander Thurm and Axel Bauer who implemented a gate-level simulation of the
Z3 processor. We became aware of synchronization problems when the simulation
refused to run. I also thank Franz Konieczny, Reimund Spitzer, and Roland Schultes
who wrote part of a stand-alone simulation of the processor in C. We started working
on the Z3 with the help of Konrad Zuse, who gladly answered our questions. It was
amazing to see how, after almost sixty years, the whole design of the Z3 was still in
his head. Unfortunately, Konrad Zuse died in December 1995 before this description
of his work was ready. This paper is dedicated to his memory.

References

[Aiken, Hopper 46| H. Aiken and G. Hopper, “The Automatic Sequence Con-
21

[Burks, Burks 81]

[Burks, Burks 88]

[Czauderna 79]

[Knuth 81]

[Koren 93]

[Lavington 75]

[Lavington 80]
[Randell 82]

[Rojas 93]

[Rojas 94]

[Schweier, Saupe 88]

[Stern 81]

[Zuse 41]

[Zuse 70]

trolled Calculator”, reprinted in [Randell 82], pp. 203-222.

A. W. Burks and A. R. Burks, “The ENIAC: First General-
Purpose Electronic Computer”, Annals of the History of Com-
puting, Vol. 3, N. 4, 1981, pp. 310-399.

A. W. Burks and A. R. Burks, The First Electronic Computer
— The Atanasoff Story, The University of Michigan Press, Ann
Arbor, 1988.

K.-H. Czauderna, Konrad Zuse, der Weg zu seinem Computer
Z3, Oldenbourg Verlag, Munich, 1979.

D. Knuth, The Art of Computer Programming — Seminumer-
ical Algorithms, Vol. 2, 1981.

I. Koren, Computer Arithmetic Algorithms, Prentice Hall, En-
glewood Cliffs, NJ, 1993.

S.H. Lavington, A history of Manchester computers, NCC
Publications, Manchester, 1975.

Early British Computers, Digital Press, Manchester, 1980.

B. Randell, The Origins of Digital Computers, Springer-
Verlag, Berlin, 1982.

R. Rojas, “Who invented the computer? The debate from the
viewpoint of computer architecture”, in W. Gautschi (ed.),
Fifty Years Mathematics of Computation, Proceedings of Sym-
posia in Applied Mathematics, AMS, 1993, pp. 361-366.

R. Rojas, “On Basic Concepts of Early Computers in Relation
to Contemporary Computer Architectures”, Proceedings of the
13th World Computer Congress, Hamburg, pp. 324-331.

U. Schweier and D. Saupe, “Funktions- und Konstruktions-
prinzipien der programmgesteuerten mechanischen Rechen-
maschine 71”7, Arbeitspapiere der GMD 321, Bonn, 1988.

N. Stern, From ENIAC to UNIVAC, Digital Press, Bedford,
1981.

K. Zuse, Patentanmeldung Z-391, German Patent Office,
Berlin, 1941.

K. Zuse, Der Computer mein Lebenswerk, Springer-Verlag,
Berlin, 1970.

22

[cycle | stage | exponent significand [

0 | LILII

1 IV,V | Aa:=Af

if (Bf[—14]=1) then Be:=Ba+Bb

LILII | Ae:=Aa+Ab e Bo—Ba

2 v,V Aa:=Ae, Af:=0, Ab:=0 Ba:=Be/2

if (Bf[—13]=1) then Be:=Ba+Bb

LILII | Ae:=Aa+Ab e Bo—Ba

3 v,V Aa:=Ae Ba:=Be/2

if (Bf[—12]=1) then Be:=Ba+Bb

LILII | Ae:=Aa+Ab e Bo—Ba

4
i IV,V | Aa:=Ae Ba:=Be/2
LILI | Ae:=AatAb if (Bf[¢ — 15]=1) then Be:=Ba+Bb
else Be:=Ba
14
15 IV,V | Aa:=Ae Ba:=Be/2
. ,_ If (Bf[0]=1) then Be:=Ba+Bb
LILII | if (Be > 2) then Ae:=Aa+1 e e
if (Be > 2) then Bf:=Be/2
16 v,V Af:=Ae else Bf:=Be

Bb:=0

Figure 10: The 16 cycles needed for the multiplication algorithm. The i-th bit of
register Bf is denoted by Bf[i]. The first argument is stored in the register pair
<Af,Bf> and the second in <Ab,Bb> before the operation is started.

23

[cycle | stage | exponent | significand [
0 | LILII
1 v,V Aa:=Af Ba:=Bf
AL if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1
LILIII | Ae:=Aa—Ab else Be:=Ba, bt:=0
N Bf:=0
2 | vy | RETAe if (bt=1) then Bf[0]:=1
'_ Ba:=2xBe
'_ if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1
LILIIL | Ae:=Aat+Ab else Be:=Ba, bt:=0
o if (bt=1) then Bf[—1]:=1
3 1v,v Aa:=Ae Ba:—2x Be
o if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1
LILII | Ae:=Aa+Ab cloe BorBa, b0
4
. __ if (bt=1) then Bf[2—i]:=1
7 v,V Aa:=Ae Ba:—2x Be
__ if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1
LILIII | Ae:=Aa+Ab else Be:=Ba, bt:—0
15
__ if (bt=1) then Bf[—14]:=1
16 | IV,V | Aa:=Ae Bar 2 Bo
'_ if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1
LILIII | Ae:=Aa+Ab else Be:=Ba, bti—0
17 v,V | if (Bf[0] = 0) then Ab:=—1 | Ba:=Bf, Bb:=0
LILIIT | Ae:=Aa+Ab Be:=Ba+Bb
. if (Bf[0]=0) then Bf:=2xBe
18 | Vv,V | Af:i=Ae e e
Figure 11: The 18 cycles needed for the division algorithm. The i-th bit of register

Bf is denoted by Bf[i]. The dividend is stored in the register pair <Af,Bf> and the
divisor in <Ab,Bb> before the operation is started.

24

[[cycle | stage [exponent [significand [
0 | LILII
If (Af[0]=1) then Ba:=2xBf
1 1v,v else Ba:=Bf
Bb[0]:=
LILIII if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1
” else Be:=Ba, bt:=0
9 V.V Bf:=0 // if (bt=1) then Bf[0]:=1
’ Ba:=2x Be, Bb:=2xBf, Bb[—1]:=1
LILIII if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1
” else Be:=Ba, bt:=0
if (bt=1) then Bf[—1]:=1
3| V.V Ba:=2x Be, Bb:i=2xBf, Bb[2]:=1
LILIII if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1
” else Be:=Ba, bt:=0
4
. if (bt=1) then Bf[2—i]:=1
L v,V Ba:=2xBe, Bb:=2xBf, Bb[L — i]:=1
LILIII if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1
” else Be:=Ba, bt:=0
17
if (bt=1) then Bf[—16]:=1
18 1 Vv,V Ba:=2xBe, Bb:=2xBf
LILIII if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1
” else Be:=Ba, bt:=0
19 | IV,V | Aa:=Af/2 | Ba:=Bf, Bb:=0
LILIIT | Ae:=Aa+0 | Be:=Ba+Bb
20 1v,v Af:=Ae Bf:=Be

Figure 12: The 20 cycles needed for the square root algorithm. The i-th bit of registers
Bf and Af are denoted by Bf[i] and Af[é] respectively. The argument is stored in the
register pair <Af Bf> before the operation is started.

25

exponent of input exponent of result

K Q
punched tzpe control unit @ @(? @
E read

displ_ay_ ' g
Pa opcode g?s:gi?)lrl](:a“on .';/I Z (keyboard) R (result)
b s elelol ©@O0@
Pb address Sgn v ®G®O® ®E®®
8 OO OOOOO®
@O0 @O0

multiplexer

zero
infinite

1 | . [14]
+—"| exponent significand

address 64 numbers

memory

26
Figure 13: The complete architecture of the 73

