

http://zuse.zib.de

The Konrad Zuse Internet Archive preserves and offers free access to the digitized original documents of

Konrad Zuse's private papers and to other related sources.
The Konrad Zuse Internet Archive is a nonprofit service that helps scholars, researchers, students and

other interested parties discover, use and build upon a wide range of content in a digital archive. For more

information about the Konrad Zuse Internet Archive, please contact zusearchive@zib.de.

Your use of the Konrad Zuse Internet Archive indicates your acceptance of the Terms & Conditions of Use

(http://zuse.zib.de/tou) including the following license agreement. If you do not accept the Terms &

Conditions of Use you are not permitted to use the material.

This work by Konrad Zuse Internet Archive is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

(http://creativecommons.org/licenses/by-nc-sa/3.0/).
Based on a work at http://zuse.zib.de

Attribution (BY) - You must attribute the work in the manner specified by the author or licensor (but not in any way that

suggests that they endorse you or your use of the work). Attribute with "Konrad Zuse Internet Archive

(http://zuse.zib.de)".
Noncommercial (NC) - You may not use this work for commercial purposes.
Share Alike (SA) - If you alter, transform, or build upon this work, you may distribute the resulting work only under the

same or similar license to this one.

The usage of this document requires the consideration of possible third party copyrights, and might

necessitate obtaining the consent of the copyright holder. The Konrad Zuse Internet Archive assumes no

liability with respect to the rights of third parties. The Konrad Zuse Internet Archive is not responsible for the

claims of any third party resulting from any infringement of copyright laws.

Title: Conditional Branching is not Necessary for Universal
Computation in von Neumann Computers

Author(s): Raúl Rojas
Date: 1997
Published by: Konrad Zuse Internet Archive
Source: Essay - ZIA ID: 0686

Conditional Branching is not Necessary for Universal

Computation in von Neumann Computers

Ra�ul Rojas
�University of Halle

Department of Mathematics and Computer Science
rojas�informatik�uni�halle�de�

Abstract� In this paper we discuss the issue of the minimal instruction set necessary
for universal computation� Our computing model is a machine consisting of a processor
with a single n�bit register and a separate memory of n�bit words� We show that four
simple instructions are su�cient in order to evaluate any computable function� Such
reduction of the instruction set can only be achieved by exploiting the properties of self�
modifying programs� Then we prove that� surprisingly� conditional branching can be
substituted by unconditional branching� This is the main result of this paper� Therefore
any computable function can be computed using only the instructions LOAD� STORE�
INC and GOTO �unconditional branching�� We also show that externally stored loop�
ing programs using indirect addressing and no branches are as powerful as conventional
computer programs�

Categories� F�	�	� Models of Computation� Self�Modifying Machines� C�	 Processor
Architectures�

� The computing model

In theoretical computer science several di�erent computability paradigms have
been developed which lead to the de	nition of exactly the same set of computable
functions� The usual approach is to postulate a general information processing
model with a minimal incarnation� Turing machines
 for example
 are 	nite au�
tomata with a moving read�write head
 an unbounded storage tape and simple
state transition rules� They transform a single bit at each time step
 yet they
can compute anything that general recursive functions
 lambda calculus or Post
rewriting systems can� Computers with a von Neumann architecture are just an�
other alternative for the solution of the computability problem� Provided they
have enough memory
 they are as powerful as Turing machines
 that is random
access machines are capable of universal computation �e�g� �Papadimitriou �
���

All this is well�known and in some cases there has been an on�going con�
test to 	nd the minimal device still capable of universal computation� There are
universal Turing machines with just a few states and two symbols �Minsky ����
One�dimensional cellular automata with two symbols and a small neighborhood
are also universal �e�g� �Wolfram ����� However
 much less thought has been given
to the question of 	nding the minimal von Neumann computer still capable of
universal computation� A notable exception is Minsky
 who proves that a ma�
chine with a single integer register �unbounded in its numerical capacity� and
capable of executing multiplication and conditional division is still a universal
computer because it can simulate any Turing machine �Minsky ���� Two un�
bounded registers and some simple assembler instructions led also to a universal
computer �Minsky ����

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

Minsky�s approach is pervasive and the minimal architecture he de	nes seems
to be the best we can do with a single register� Yet there is something arti	cial in
this assumption
 because the spirit of a Turing machine is to use a small processor
�the read�write head with a 	nite number of states� and an unbounded amount of
passive memory� An in	nite register leads to an in	nite processor� We would like
to improve Minsky�s results in the sense that the processor must be of 	nite size
although the memory can have an unbounded size
 just like in a Turing machine�
The instruction set we will use is also simpler than Minsky�s� Our instruction set
exploits the properties of modular arithmetic
 the one implemented by registers
of 	nite size in von Neumann machines�

Patterson and Hennessy mention that a single instruction can emulate all
others in a universal computer �Patterson
 Hennessy �
�� The instruction sub�
tracts two numbers stored at two speci	ed addresses
 stores the result back and
jumps to a given address if the result is negative� If the result is positive the
next instruction in the sequence is executed� However
 this single instruction is
too high�powered because it is actually a mixture of elementary instructions� It
contains everything� loads
 stores
 subtraction and conditional branching� This
single instruction is actually of a more high�level type than the minimal instruc�
tion set we discuss below�

So called transport�triggered architectures �Corporaal ��� provide a single in�
struction for the compiler
 i�e� the MOVE instruction� The computer consists of
several arithmetical units
 conditional units and I�O devices� The registers of the
units are memory mapped and an operation is triggered by a MOVE operation
�Jones ���� Loading two numbers in the addition unit
 for example
 triggers an
addition and the result can be put into memory using another MOVE� However

from a logical point of view
 such architectures work with a large set of hardware
implemented operations �addition
 subtraction
 numerical tests for conditional
branching
 etc��
 each triggered by a MOVE operation to a speci	c address� Ob�
viously these machines are using more than one instruction
 but this simple fact
is masked to the compiler which only schedules MOVE instructions� Of course

the programmer is aware that he is using a much larger implicit instruction set�
Therefore these machines are not comparable to the minimal architecture that
we discuss in this paper�

Another motivation to look for a minimal computer architecture has to do
with the history of computers� Between ���� and ��
� di�erent electronic and
mechanical computing devices were built in the USA and Europe� A natural ques�
tion to ask is which one of them quali	es as the 	rst genuine universal computer�
In some books on the histiry of computing the dividing line between calculating
machines and universal computers is drawn by considering whether the program
is externally stored or is kept in memory� As we will see
 the stored program
concept is important but only if complemented by the right set of logical in�
structions� This paper improves Minsky�s results by showing that self�modifying
programs and four elementary instructions �which do not include conditional
jump�� are all that is needed for universal computation in von Neumann ma�
chines�

Our computing model is the following� the processor contains a single n�bit
register �called the accumulator� and an external memory with n bits per word�

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

The instruction set consist of the following 	ve instructions

LOAD A � load address A into accumulator
STORE A � store accumulator into address A
CLR � clear accumulator
INC � increment accumulator
BRZ X � branch to address X if accumulator is zero

The instructions have an opcode and an address 	eld� The program is stored
in memory and is executed sequentially
 instruction by instruction
 until a con�
ditional branch is taken� In this case execution continues at the new address
de	ned by the branch�

We do not deal with the problem of extracting the result of the computation
from the machine �since some kind of output instruction is needed�� We assume
that the input for a computation can be loaded into memory and read o� after the
machine halts� Therefore we do not consider input
 output or halt instructions�
This is the usual convention when dealing with Turing machines�

� Additional instructions

Some simple examples should convince the reader that the above set of instruc�
tions is all we need to implement any computation �when enough memory is
available�� We will de	ne some macros
 that is
 sequences of instructions repre�
sented by a mnemonic and containing arguments� In the following we assume
that addresses are represented by alphanumerical labels� Those beginning with
upper case denote data or reserved memory cells� The absolute address is en�
coded in the address 	eld of the instruction� The example below is the de	nition
of the instruction CLR A
 which sets memory address A to zero�

CLR A � CLR
STORE A

A similar de	nition can be used to de	ne the instruction INC A which increments
the contents of address A� The instruction MOV A
B copies the contents of
address A to address B�

MOV A
 B � LOAD A
STORE B

The instruction below jumps to address X if address A contains zero�

BRZ A
 X � LOAD A
BRZ X

The unconditional jump can be de	ned as follows�

GOTO X � CLR
BRZ X

The void instruction is sometimes useful when we need a place 	ller�

NOP � STORE T�

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

Some addresses must be reserved for temporary computations or to store con�
stants� They are denoted by T�
 T�
 etc� Note that each macro should use
di�erent temporary memory cells in order to avoid interferences� The labels of
addresses are assumed to be local to the macro de	nition� The macro processor
or the programmer must take care of transforming them into the right absolute
addresses�

The instruction below produces the binary complement of the contents of ad�
dress A� It works by incrementing A until it becomes zero� Since the accumulator
is only n bits long it holds that A�CMPL�A������

CMPL A � CLR T�
loop� INC A

BRZ A
 end
INC T�
GOTO loop

end� MOV T�
 A

Using the macro for complementing it is now easy to negate a number stored in
address A�

NEG A � CMPL A
INC A

The decrement instruction can be written now as�

DEC A � NEG A
INC A
NEG A

Note that we are making no special e�ort to be �e�cient
 that is
 to minimize
the number of computer cycles� All we want is to show that all relevant com�
putations can be performed with this minimal machine� The addition B��A�B

for example
 can be programmed as follows�

ADD A
 B � loop� BRZ A
 end
INC B
DEC A
GOTO loop

end� NOP

It is very useful to have shifts when dealing with multiplication and division� A
left shift can be implemented by adding a number to itself� A shift to the right
is somewhat more complicated� The code below decrements the argument two
times for each increment to the temporary variable T� �initially set to zero��
The result is a division of the argument A by ��

SHR A � CLR T�
loop� BRZ A
 end

DEC A
BRZ A
 end
DEC A
INC T�
GOTO loop

end� MOV T�
 A

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

These examples should convince the reader that any interesting arithmetical
operation can be performed with this machine� Care must be taken not to call
macros recursively and not to overwrite temporary variables
 but this is a minor
technical point for the programmer�

� Self�modifying programs

The machine de	ned above can compute sequences of arithmetical operations

yet we are still not satis	ed� There is still a problem if we want to add a list
of numbers or copy a block of memory from one location to the other� Indirect
addressing could solve this problem
 but we did not include this feature in the
original design� Therefore the only other alternative is to write self�modifying
programs
 that is
 portions of code that generate the absolute addresses needed�

An example can illustrate the general idea� Assume that we want to de	ne a
new instruction LOAD �A� that loads into the accumulator the contents of the
memory cell whose address is stored in A� The appropriate code is the following�

LOAD �A� � MOV �LOAD
 T

ADD A
 T

MOV T

 inst

inst� � � a zero acts as place 	ller

The macro MOV �LOAD
T
 means that the opcode of the load operation has
been stored �as part of the program� at a temporary address T
 which is now
being referenced in order to load this opcode into T
� Once this has been done
the instruction �LOAD address contained in A is created by adding A to the
opcode� The result is stored at address �inst
 just before the instruction in this
address is executed� Therefore
 the load instruction is constructed 	rst and then
it is executed� In a similar way we can de	ne the instruction STORE �A�
 that
is
 the store instruction with indirect addressing�

The instruction below copies one block of memory of N words starting at the
address contained in A to the memory cells starting at the address contained in
B� The expanded code contains two memory cells which are being modi	ed in
each cycle of the loop�

COPY A
 B
 N � loop� BRZ N
 end
DEC N
LOAD �A�
STORE �B�
INC A
INC B
GOTO loop

end� NOP

The instruction set we de	ned at the beginning is universal because we can im�
plement a simulation of any Turing machine� The code for the simulator can
be written using the primitive instructions and the tape can be simulated by
a contiguous region of memory which can be referenced using a pointer �indi�
rect addressing�� Note that since Turing machines with a tape in	nite in only
one direction are equivalent to the standard ones
 we do not have any problem

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

by restricting the simulated tape to extend in only one direction in memory
�Minsky ����

We can even drop one instruction� CLR is unnecessary� If we take care of
initializing address Z to � �as part of the program load phase�
 we can substitute
CLR by �LOAD Z �

� Problems of the computing model

There is one main di�culty with the instruction set mentioned above and it
has to do with memory addressing� A Turing machine consists of an unbounded
storage tape� There is no addressing problem in this case because the read�write
head moves to the left or to the right as necessary� However
 in our architecture
the absolute address is stored in the address 	eld of each instruction
 so that no
unbounded memory space can be referenced� If the data size grows beyond the
addressable space
 the number of bits for each memory word has to be increased

that is
 the processor is not 	xed in size and can vary according to the problem
at hand�

The solution to this di�culty is to use relative addressing� The address in
the address 	eld refers then to the current instruction address plus a two�s com�
plement o�set
 stored in the address 	eld of the instruction� The limited size of
the address 	eld means that only a certain region around the current instruction
can be addressed�

bit i

bit i+1

bit i-1

state

state

state

TM
(i-th copy)

TM
(i+1-th
copy)

move to the
right

Figure �� Organization of a self�copying Turing machine

If we now want to simulate a Turing machine
 we cannot refer to the storage

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

tape using absolute addresses� If the stored data grows beyond the addressable
space
 we have to implement a branch to a region in memory closer to the last
storage cell� The programmust run behind the data being stored in the simulated
tape�

Figure � shows our solution� A piece of code for the simulation of a universal
Turing machine �called TM in the 	gure� alternates with two 	elds used to store
the i�th bit of the storage tape and the current state of the Turing machine�
Moving the read�write head to the right means that the next storage bit is the
�i � ���th� The simulation jumps to the code below and continues executing�
In this way the current bit in the storage tape is never too far away from the
instructions being executed� Note that the code for the universal TM has a
constant size since its state and output tables have a 	xed number of entries�

The length n in bits of the accumulator and memory cells must be large
enough to accommodate the opcode of the instructions and to contain the largest
relative addresses needed for the emulation of the Turing Machine� Since the size
of the TM code is 	xed
 there exists a 	nite n ful	lling this condition�

The problem with this scheme is that we do not want to prepare the memory
with an in	nite number of copies of the simulator of the universal Turing ma�
chine� The simulator must copy itself downwards or upwards according to the
movement of the simulated read�write head� Remember again that we are not
interested in e�ciency but only in theoretical realizability�

The simulator of the Turing machine must implement a table look�up� Given
the current state and input bit
 the new state and the output bit must be de�
termined� This leads naturally to ponder whether conditional branching can
be eliminated from the instruction set and substituted by plain unconditional
branching� The answer is a resounding yes�

� The self�reproducing Turing machine

In the following the basic architecture remains unchanged
 but now memory
addresses refer to cells relative to the address of the current instruction� The in�
struction set consists of the following instructions with their respective opcodes�

GOTO ��
LOAD ��
STORE ��
INC ��

The opcodes are stored in the highest two bits of the n�bit memory word whereas
the lower n� � bits are reserved for the address o�set�

For the example below we need a portion of the state�transition and output
table of the Turing machine� Assume that the two entries for state QN are the
following�

state input bit output bit new state direction
QN � � QK down
QN � � QM up

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

The issue now is how to program the simulator without using any kind of condi�
tional branching� We will use the following trick� assume that the Turing machine
has Z states� The coding we will use for state � will be �GOTO Q�
 where Q�
is the relative address of the memory cell at which the code for processing state
Q� begins
 measured relatively to the address with label �state �see the piece of
code below�� Similarly state � will be represented by the opcode of the instruc�
tion �GOTO Q� etc� We can start the simulation by doing an unconditional
branch to the memory cell where the current state is stored �the address labeled
�state �� This will then transfer control to the appropriate piece of code� The
current tape bit contains a � or a �� According to the opcodes we selected above

this can be interpreted as the instruction �GOTO � and �GOTO � respec�
tively� Remember that � and � are the o�sets for relative addressing and not
absolute addresses� The piece of code below
 which includes the trivial macro
�MOV
 shows how to take advantage of this fact�

bit� �
state� GOTO QN

���
QN� INC bit

MOV bit
 instN
instN� �

GOTO zeroN
GOTO oneN

zeroN� MOV �
 bit
MOV �GOTO QK
 state below
GOTO move down
���

oneN� MOV �
bit
MOV �GOTO QM
 state above
GOTO move up

Once the instruction contained in the cell with the label �state has been ex�
ecuted
 control is transferred to label QN� The number in the cell �bit is in�
cremented and is stored in the cell labeled �instN � If the tape bit was a zero

control is transferred to the instruction immediately below
 which in turn jumps
to the label �zeroN � If the tape bit was a �
 control is transferred to the second
instruction below �instN and then to the cell labeled �oneN � In both cases
we just need to update the i�th tape bit �in our example the updates are di�er�
ent for each case�
 and the new state� The new state is stored in the state 	eld
above or below the current frame
 according to the movement direction of the
read�write head� In our example the new state is QK when the read�write head
moves down and QM when it moves up� After this is done the simulator must be
copied above or below the current frame� This is the most sensitive operation

since it must be done using a loop with a 	xed number of iterations
 but we do
not have any kind of conditional jump in the instruction set� Figure � shows how
the TM can be copied from one frame to another�

The piece of code which follows copies the simulator of the Turing machine
to the upper frame when this is the direction of motion of the read�write head
as in our example �shown in Figure ��� The transfer routine is copied 	rst from

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

TM

transfer routine
copies the TM
in the lower
frame to the
upper frame

TM

upper
frame

lower
frame

transfer
routine
is copied to
upper frame

Figure �� Transfer of the code for the Turing machine

the simulator to the lower part of the upper frame� Then control is transferred
to the address �transfer and the small routine begins copying the whole TM
simulator to the upper frame� Note that the address �frame below is the 	rst
address of the TM simulator and the address �frame is the 	rst address of the
destination for the copy process �the current frame from the point of view of the
copy routine��

move up� �copy transfer routine
to upper frame�
���

transfer� LOAD frame below � start of copy routine
dest� STORE frame

INC transfer
INC dest
GOTO transfer � end of copy routine
���
GOTO continue � last instruction to be copied

The routine copies one word after the other from the frame below to the current
frame until the copying process overwrites the 	rst instruction of the copying
routine� We only have to take care of aligning the memory so that the instruc�
tion �GOTO continue is copied to the address �transfer � When control is
transferred to this address the simulator executes the instruction �GOTO con�
tinue�� and starts again at its new initial position in the upper frame� The 	rst
instructions of the simulator can be used to clean�up the results of the copying
process and to 	x the lower boundary of the simulation program �which requires
 GOTO continue as the last instruction��

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

We have omitted some details but the reader can 	ll in the gaps� It should
now be clear that we can run the simulation of the Turing machine using only
relative addressing and without any kind of conditional jump� The only place at
which we need to break a loop is when copying the simulator� This can be done
by overwriting the copying routine�

� Other possible minimal instruction sets

Some of the early computing machines built in the ��
�s did not store the
program in the addressable memory� The executable code was punched on a tape
which was read sequentially� This was the case of the Z�
 built by Konrad Zuse
in Berlin
 and the Mark I
 built by Howard Aiken at Harvard� An interesting
question to ask is whether these machines qualify as universal computers� A
positive answer would require a proof that we can simulate a Turing machine�
Since such a simulation requires an emulator running iteratively
 let us assume
that both ends of the punched tape can be glued together to obtain an in	nite
loop� Assume now that the instruction set consists of the instructions�

LOAD �A�
STORE �A�
INC
DEC

The last two instructions increment or decrement the accumulator� The 	rst
two use indirect addressing
 that is
 they load or store a number from or into
the address contained in the memory cell with address A�

A Turing machine can be simulated by reserving a block of memory for the
tape� The position of the read�write head will be indicated by the contents of
a memory cell labeled �tape bit � The read�write head can be moved to the
left or right by incrementing or decrementing the contents of this memory cell�
Simulating the tape is therefore almost as easy as in any conventional computer�

The state of the Turing machine can be updated by looking at tables in
memory� Assume that the code for the current state QN is stored in the memory
cell �state � The code for this state consists of the address of the memory word
in which the next state is stored when the input bit is �� If the input bit is �

the next state is stored at an address below� The following piece of code 	nds
the next state according to the contents of the tape bit�

LOAD �state� � load 	rst table entry
STORE �zero� � store into address �
INC state
LOAD �state� � load second entry
STORE �one� � store into address �
LOAD �tape bit� � load i�th tape bit
STORE �bit� � store into address �
LOAD ��� � select table entry according to tape bit
STORE �state� � store as new state

The address with label �zero contains a �
 that is
 a pointer to address �� the
address with label �one a pointer to address �
 and the address with label �bit

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

a pointer to address �� The new state �when the input bit is �� is stored into
address �� The new state when the input is � is stored into address �� The tape
bit is stored into address �� An indirect load to address � recovers the new state
and a store to the memory cell �state updates the state of the Turing machine�
Using the same approach the tape bit can be updated performing a table look�up
�before updating the machine�s state��� Incrementing or decrementing the tape
pointer can be done by selecting the appropriate value from a table created at
each step�

LOAD �tape position�
INC
STORE �tape inc�
LOAD �tape position�
DEC
STORE �tape dec�
���
tape bit� � � the contents of these addresses
tape bit�� � � are modi	ed by the program
tape bit�� � �

The address �tape position contains a pointer to the address �tape bit � The
addresses �tape inc and �tape dec contain pointers to the address one and two
positions below �tape bit �that is
 �tape bit� and �tape bit� �� The correct
value can be selected by looking into this small table of two items using the
technique discussed above for the case of state updates�

Remember that a Turing machine with a tape extending in only one direction
is equivalent to any standard Turing machine� Therefore we do not have any
problems in reserving some addresses �address �
 address �
 etc�� and letting
the in	nite tape extend upwards in memory� We assume
 of course
 that the
addressable memory is su�cient for the problem at hand and that the bit length
of the accumulator is the adequate one� When the computation is 	nished
 the
machine can be left looping in a 	xed state or an additional halt instruction
can be added to the instruction set�

We can even eliminate the DEC instruction from the instruction set by re�
membering that the tape of the Turing machine we are simulating extends in
only one direction� We can do the following� if address i represents a bit of the
tape
 the next bit of the tape will be stored at address i � �
 that is
 we leave
a free word between them� We then store at address i � � the number repre�
senting address i
 that is a pointer to the previous tape bit� In this way each
time the read�write head moves forward we just have to increment the tape po�
sition pointer two times� Using an auxiliary memory word we can increment the
pointer once again
 in order to store the number i at address i � �� Later on

if the read�write head has to move backwards and if it is currently located at
position i � �
 we just have to load the contents of address i � � �an address
easy to compute using INC� to get address i
 that is
 the address of the previous
tape bit� This is the new value of the tape position pointer� Since decrementing
the tape pointer is the only use we have for the DEC instruction
 we can omit
it safely from the instruction set�

This should su�ce to convince the reader that a looping external programs
using an instruction set consisting of LOAD �A�
 STORE �A�
 and INC �with

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

the assumptions mentioned� are as powerful as conventional computer programs
although they still have the problem solved in Section �
 that is
 they require
a large enough accumulator because they work with absolute addresses� Ab�
stracting from this di�culty
 indirect addressing is therefore a building block as
powerful as conditional branching� Both the Z� and the Mark I lacked indirect
addressing
 although they featured all the arithmetic necessary for our purposes�
Had any one of them contained this feature
 they would have been
 at least in
principle
 as powerful as modern computers�

� Summary

We have proved that some minimal instruction sets not including conditional
branching are nevertheless su�cient to simulate universal Turing machines� It
is mentioned frequently in the literature that conditional branching is needed in
universal computers� This is not the case
 provided the program can modify itself
and unconditional branching plus some other primitive instructions are available
in the instruction set� It has also been said that memory�stored programs are
a trademark of universal computers� This is also not the case and a simple
design with a looping external program capable of indirect addressing su�ces to
simulate a universal Turing machine�

References

Corporaal ��
 Corporaal� H�� �Evaluating Transport�Triggered�Architectures for
Scalar Applications�� Microprocessing and Microprogramming� ��� 	���
�	����� ������

Jones ��
 Jones� D�W�� �The Ultimate RISC�� Computer Architecture News� 	��
�� �	����� ������

Minsky ��
 Minsky� M�� Computation� Finite and In�nite Machines� Prentice�Hall�
Englewood Cli�s� N�J �	�����

Papadimitriou ��
 Papadimitriou� C� H�� Computational Complexity� Addison�Wesley�
Reading� MA �	�����

Patterson� Hennessy ��
 Patterson� D�� and J� Hennessy� Computer Organization and
Design� the Hardware�Software Interface� Morgan Kaufmann� San Ma�
teo� CA� �	�����

Tabak and Lipovski ��
 Tabak� D�� and G� J� Lipovski� �MOVE Architecture in Dig�
ital Computers�� IEEE TRansactions on Computers� �	����� 	���	���

Wolfram ��
 Wolfram� S�� Theory and Applications of Cellular Automata� World Sci�
enti�c� Singapur �	�����

Konrad Zuse Internet Archive http://zuse.zib.de
License: CC-BY-NC-SA

