Konrad Zuse
Internet Archive

http://zuse.zib.de

Title: How to Make Zuse's Z3 a Universal Computer
Author(s): Raul Rojas

Date: 1998

Published by: Konrad Zuse Internet Archive

Source: Essay - ZIA ID: 0684

The Konrad Zuse Internet Archive preserves and offers free access to the digitized original documents of
Konrad Zuse's private papers and to other related sources.

The Konrad Zuse Internet Archive is a nonprofit service that helps scholars, researchers, students and
other interested parties discover, use and build upon a wide range of content in a digital archive. For more
information about the Konrad Zuse Internet Archive, please contact zusearchive@zib.de.

Your use of the Konrad Zuse Internet Archive indicates your acceptance of the Terms & Conditions of Use
(http://zuse.zib.de/tou) including the following license agreement. If you do not accept the Terms &
Conditions of Use you are not permitted to use the material.

This work by Konrad Zuse Internet Archive is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
Based on a work at http://zuse.zib.de

[@0Sle)

Attribution (BY) - You must attribute the work in the manner specified by the author or licensor (but not in any way that

suggests that they endorse you or your use of the work). Attribute with "Konrad Zuse Internet Archive
(http://zuse.zib.de)".

Noncommercial (NC) - You may not use this work for commercial purposes.

Share Alike (SA) - If you alter, transform, or build upon this work, you may distribute the resulting work only under the

same or similar license to this one.

The usage of this document requires the consideration of possible third party copyrights, and might
necessitate obtaining the consent of the copyright holder. The Konrad Zuse Internet Archive assumes no
liability with respect to the rights of third parties. The Konrad Zuse Internet Archive is not responsible for the
claims of any third party resulting from any infringement of copyright laws.

Konrad Zuse @@@
Internet Archive
BY NC SA

How to Make Zuse’s Z3 a Universal Computer

Raul Rojas

Abstract

The computing machine Z3, built by Konrad Zuse between 1938
and 1941, could only execute fixed sequences of floating-point arith-
metical operations (addition, subtraction, multiplication, division and
square root) coded in a punched tape. An interesting question to ask,
from the viewpoint of the history of computing, is whether or not these
operations are sufficient for universal computation. In this paper we
show that in fact a single program loop containing these arithmetical
instructions can simulate any Turing machine whose tape is of a given
finite size. This is done by simulating conditional branching and indi-
rect addressing by purely arithmetical means. Zuse’s 73 is therefore,
at least in principle, as universal as today’s computers which have a
bounded addressing space. A side-effect of this result is that the size
of the program stored on punched tape increases enormously.

Universal Machines and Single Loops

Nobody has ever built a universal computer. The reason is that a uni-
versal computer consists, in theory, of a fixed processor and a memory
of unbounded size. This is the case with Turing machines which have
infinite long tapes. Also, in the theory of general recursive functions
there are a small set of rules and some predefined functions, but there
is no upper bound on the size of intermediate results. Modern com-
puters are therefore only potentially universal: They can perform any
computation that a Turing machine with a tape of bounded size can
perform. If more storage is required, more can be added without hav-
ing to modify the processor (provided that the extra memory is still
addressable).

It is the purpose of this paper to show that Konrad Zuse’s Z3, a
computing automaton built in Berlin between 1938 and 1941, could
in principle be programmed as any other modern computer. This
is a rather curious result, since the Z3 can only compute sequences
of arithmetical operations (addition, subtraction, multiplication and
division) stored in a punched tape. There is no conditional branching.
Since both ends of the punched tape can be glued together, the 73 is a
machine capable of repeatedly executing a single loop of arithmetical
operations which act on numbers stored in memory.

It is well known that any computer program containing conditional
branches and the usual instructions of imperative languages (Pascal
for example) can be programmed using a single WHILE loop [1]. Also,
all conditional branches can be eliminated from the loop [2]. I showed
in [4] that if the Z3 is extended with indirect addressing it can sim-
ulate a Turing machine. We will adopt the techniques used in those
papers in order to show that a Turing machine can be simulated by a
single program loop of a machine capable of computing the four basic
arithmetic operations.

Our computing model is the following: there exist memory loca-
tions which will be denoted by lower case letters. We can only refer
explicitly to memory addresses (there is no indirect addressing). Ini-
tially (for the sake of simplicity) we will restrict our programs for the
73 to a language containing only statements of the form

a="bopc,

where op represents one of the four basic arithmetic operations. Any
statement of this form can be “compiled” using the two registers of
the Z3 and four assembler instructions (which load the two argument
registers in the appropriate order):

LOAD b
LOAD ¢
op
STORE a

The store operation refers implicitly to the first register (accumulator)
of the processor. All computations are performed with floating-point
numbers. The mantissa has a precision of 16 bits for its fractional
part. The Z3 uses normalized floating-point numbers (i.e. with a
mantissa m such that 1 < m < 2). The special case of a zero mantissa

is handled with a special code (like in the IEEE standard). There is
also a “halt” instruction in the Z3 (when a number is displayed on

the console the machine stops). For more details on the architecture
of the Z3 see [5] and [6].

Simulating Branches

We show here how to simulate the operation of a CASE statement
using a technique introduced in [2] and used previously for the devel-
opment of the theory of recursive functions [3]. Define the state of
the machine as the state of its memory. Assume that in a program
P there are n consecutive sections of code Pi,..., P, and that the
variable z € {1,2,...,n} is used to select the section which should
perform the computation we are interested in. The general strategy is
to execute all n sections of code, one after the other, but we will allow
only the z-th section to modify the memory contents. In order to im-
plement this idea we transform each section of code P; in equivalent
code P]' according to the following recipe: At the beginning of each
section P; a comparison is made and if z = j the auxiliary variable ¢
is set to zero, otherwise it is set to one. The variable ¢ can be inter-
preted as a flag for the “selected section” since it will be only zero in
P,. Now all original statements in the program Py, ..., P, of the form
a = b op c are transformed to

a=a-t+ (bopc)-(1—1t)

and are compiled accordingly. Therefore the state of variable a will not
be modified unless the computation is performed within the z-th code
section. When all statements have been transformed in this way and
the appropriate initialization of ¢ has been inserted at the beginning of
each code section, we can execute the transformed program P,..., P!
from beginning to end. Most of the computations are superfluous,
since we execute all sections of code, but only P} modifies the memory,
as is to be expected from a CASE statement.

We must only show now that it is in fact possible to perform the
computation

if (z=7) thent=0elset = 1.

where z and j are integers. The simplest approach is to use the bi-
nary representation of z, which is stored using the auxiliary variables

21,29, -,2m- LThe number m of bits used is fixed in advance according
to the total number n of sections of code that have to be selected. For
each section of code j the complement of the binary representation of j
is stored in the variables cgj), cgj). ,c%). The following arithmetical
calculation at the beginning of each code section j sets the variable ¢

to its correct value:
t=1— [—2)(—z) - () = za)]?

The variable t is set to zero only if all factors in the expression are
41, but this is only the case when z = j.

It should now be clear that an inconditional jump to code section
j can be programmed in a section of code P; by setting the next value
of z (i.e. its binary representation) to j at the end of P; and going
back to the beginning of the transformed program PJ, ..., P!. This is
accomplished by storing the program in a single loop of punched tape
which is used repeatedly.

In this and other programs all necessary constants (the binary
representations of the section code numbers) can be precomputed and

stored before we start the CASE statement.

Simulating a Turing Machine

A Turing machine (TM) is defined by a table of state transitions:
given the current state () and the tape symbol at the current position
pos of the read/write head, we read from the table and find the new
state ', the symbol to be written o and the direction dir of motion
of the read/write head (+1 or —1). The new position of the head
is given by pos = pos + dir. Before simulating a Turing machine,
the memory of the Z3 is prepared. All necessary tables are loaded
at specific addresses as are the initial contents of the TM tape. All
necessary auxiliary constants are also loaded.

It is clear that any Turing machine can be simulated using the
following master loop:

read tape symbol,

look-up new state, output symbol, and direction of movement

modify tape symbol,

update state and position of read/write head.

4

The simulation can be done using table look-up. For example, reading
the tape symbol amounts to the operation

s = memory(tape, pos),

where “tape” is the initial address of the simulated tape and “pos”
the current position. Only basic arithmetic is needed to compute the
position of entries in a table: A table starting at address T' can be
accessed at position k by computing 1" + k and using the result as an
address. Thus, the only thing which is still lacking for the simulation
of the Turing machine using the Z3 is indirect addressing, that is we
want to use the results of arithmetic operations as addresses.

Assume that we want to implement the indirect addressing opera-
tion

a = memory(x)

where z is the result of an arithmetic operation with integers and
ng < £ < ny. The integer constants n, and n;, are the limits of the
memory segment that we want to address indirectly.

We can implement the above operation using a CASE statement
with one section for each integer between n, and ny. In each section ¢
of the CASE statement we load address a with the contents of address
1. Assume for example that n, = 10 and n, = 20. The code, before
transforming it to work as a CASE statement, would be:

Pl[)l LOAD 10
STORE «
PH: LOAD 11
STORE «
ng: LOAD 20
STORE «

Now we apply a transformation similar to the one discussed above,
using x as the CASE variable. The transformed program will select
the contents of address & and will store it in address a, since only
section P, will modify the contents of a.

Note that the whole CASE statement contains one load statement
for each consecutive memory address. We read all memory addresses
between n, and ny, but we only keep the one we are interested in in a,
namely address z. In the extreme case, when the indirect addressing

operation refers to the whole memory, we would need to read all ad-
dresses in order to implement a single indirect addressing. But since
the number of indirect memory references during one simulation cycle
of the Turing machine is constant, the size of the program that we
need is also constant (for a given memory size).

Using an entirely analogous approach we can store a number to the
address represented by an arithmetical result z (indirect addressing in
STORE operations). We can, for example, update the simulated tape
of the TM using this approach.

It is clear that we have been helped here by the fact that the pro-
gram is stored in a punched tape independent of the memory. The
punched tape is allowed to be as large as necessary to read the sec-
tions of memory that we need to address indirectly (the state tables
and the tape of the TM). The TM tables, of size N, are read once, the
Turing Tape, of size M, is read once and updated once. We therefore
need three transformed sections of code. If the CASE transformation
expands each LOAD and STORE segment of code by a factor ¢, then
we need at least a tape with ¢(N 4 2M) instructions in order to sim-
ulate the Turing machine. Since we choose to simulate a Universal
Turing Machine, the size of the Turing tables is fixed once and for all.
Given that the maximum size of the Turing tape is M, the size of the
punched tape needed for our simulation program can be enormous,
but is bounded.

This proves that with the computing model of the Z3 we can,
in principle, do any computation that any other computer with a
bounded memory can perform.

The Halting Problem

The attentive reader will have noticed that the master loop of the
simulation never stops. Algorithms, however, must stop after a finite
number of steps. Fortunately, the Z3 has an additional feature which
provides the solution for this problem.

Whenever an undefined operation is performed, the Z3 stops and
a lamp is set on the console. This is the case, for example, for the
operation 0/0. Thus we define state ()9 = 0 of the simulation as the
“halting state” (for all other states @Q; is a positive integer) and the
computation 0/ is performed at the beginning of the master loop (Q

is the current state). If the simulation reaches state @y the machine
stops.

If Zuse had not thought of trapping undefined operations, we would
have been unable to stop the master loop. One possible way out in
that case would be to consider those cycles in which nothing is altered
as the “halting state” of the machine, but the human operator would
have some problems identifying this situation.

Conclusions

The main result shown in this paper is intriguing because it looks so
artificial. From the theoretical point of view it is interesting to see that
limited precision arithmetic embedded in a WHILE loop can compute
anything computers can compute. It could be argued that whenever
we expand the memory (to accommodate more tape positions for a
Turing machine) the program in the punched tape has to be expanded
as well (to cover the new memory addresses) and the number of bits
(m) used to identify the code sections has to be increased. If we
think of the punched tape as part of the processor (when simulating a
Universal Turing Machine), then we are extending the processor when
we enlarge the program in the punched tape. This is undesirable.
However, in real computers, there is also a limit for the size of the
memory we can manage (given by the addressable space, i.e. the
number of bits in the address registers). If we expand the memory we
need more addressing bits and the processor may have to be expanded
(going for example from 16-bit to 32-bit registers).

The result shown in this paper seems counterintuitive, until we
realize that operations like multiplication and division are iterative
computations in which branching decisions are taken by the hardware.
The conditional branchings we need are embedded in these arithmetical
operations and the whole purpose of the transformations used is to
lift the branches up from the hardware in which they are buried to
the software level, so that we can control the program flow. The
whole magic of the transformation counsists in making the hardware
branchings visible to the programmer.

A possible criticism of the approach discussed in this paper could
be that it greatly slows down the computations. From a purely theo-
retical point of view this is irrelevant unless we introduce a complexity

measure and we demand a simulation of Turing machines capable of
running without an exponential slowdown. From a practical point of
view obviously nobody would program the Z3 as we just described,
in the same way that nobody solves industrial problems using Turing
machines. Also, the large loop of punched tape needed for the TM
simulation program would pose extraordinary and most likely unsolv-
able mechanical difficulties.

We can therefore say that, from an abstract theoretical perspec-
tive, the computing model of the Z3 is equivalent to the computing
model of today’s computers. From a practical perspective, and in the
way the Z3 was really programmed, it was not equivalent to modern
computers. However, it is clear for me from the study of Zuse’s un-
published manuscripts (held in the archives of the Heinz-Nixdorf Mu-
seum in Paderborn) that after completing the Z3 he realized (between
1943 and 1945) that he could “lift” the decisions taken in hardware
to the software level, so as to give the programmer full control of the
computation. His plans for a “logistic machine” so elementary that
the instruction set consisted exclusively of boolean operations, will be
discussed elsewhere.

References

[1] D. Harel, “On Folk Theorems”, Communications of the ACM, Vol.
23, N. 7, 1980, pp. 379-389.

[2] O.Ibarra, S. Moran, L.E. Rosier, “On the Control Power of Integer
Division”, Theoretical Computer Science, Vol. 24, 1983, pp. 35-52.

[3] R. Péter, Recursive Functions, Academic Press, New York, 1967.

[4] R. Rojas,“Conditional Branching is not Necessary for Universal
Computation in von Neumann Computers”, Journal of Universal
Computer Science, Vol. 2, N. 11, 1996, pp. 756-767.

[5] R. Rojas, “Konrad Zuse’s Legacy: the Architecture of the Z1 and
73", Annals of the History of Computing, Vol. 19, N. 2, 1997, pp.
5-16.

[6] R. Rojas, Die Rechenmaschinen von Konrad Zuse, Springer-
Verlag, Berlin, 1998.

